• Title/Summary/Keyword: Channel Switching

Search Result 366, Processing Time 0.033 seconds

Load Aware Automatic Channel Switching for Software-Defined Enterprise WLANs

  • Han, Yunong;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5223-5242
    • /
    • 2017
  • In the last decade, the 2.4 GHz band of IEEE 802.11 WLANs has become heavily congested due to the explosive increase in demand of Wi-Fi connectivity. With the current deployment of enterprise WLANs, channel switching mechanism continues to exhibit inefficiencies because it cannot adapt to real-time channel condition and the inability to support seamless channel switching. Software Defined Networking (SDN) as an emerging architecture is promising to introduce flexibility and programmability for wireless network management. Leveraging SDN to existing enterprise WLANs, channel switching method can be improved significantly. This paper presents a software-defined enterprise WLAN framework with a load aware automatic channel switching solution, which utilizes AP load and channel interference factor (CIF) to provide seamless channel switching. Two automatic channel switching algorithms named Single Switch (SS) and Double Switch (DS) are proposed to improve the overall user experience and the experience of users with highest traffic load respectively. Experiment results demonstrate that our solution can efficiently improve user experience in terms of jitter, transmission delay and network throughout when compared to the conventional channel switching mechanism.

A Dynamic Channel Switching Policy Through P-learning for Wireless Mesh Networks

  • Hossain, Md. Kamal;Tan, Chee Keong;Lee, Ching Kwang;Yeoh, Chun Yeow
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.608-627
    • /
    • 2016
  • Wireless mesh networks (WMNs) based on IEEE 802.11s have emerged as one of the prominent technologies in multi-hop communications. However, the deployment of WMNs suffers from serious interference problem which severely limits the system capacity. Using multiple radios for each mesh router over multiple channels, the interference can be reduced and improve system capacity. Nevertheless, interference cannot be completely eliminated due to the limited number of available channels. An effective approach to mitigate interference is to apply dynamic channel switching (DCS) in WMNs. Conventional DCS schemes trigger channel switching if interference is detected or exceeds a predefined threshold which might cause unnecessary channel switching and long protocol overheads. In this paper, a P-learning based dynamic switching algorithm known as learning automaton (LA)-based DCS algorithm is proposed. Initially, an optimal channel for communicating node pairs is determined through the learning process. Then, a novel switching metric is introduced in our LA-based DCS algorithm to avoid unnecessary initialization of channel switching. Hence, the proposed LA-based DCS algorithm enables each pair of communicating mesh nodes to communicate over the least loaded channels and consequently improve network performance.

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Effect of Channel Variation on Switching Characteristics of LDMOSFET

  • Lee, Chan-Soo;Cui, Zhi-Yuan;Kim, Kyoung-Won
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 2022
  • Electrical characteristics of LDMOS power device with LDD(Lightly Doped Drain) structure is studied with variation of the region of channel and LDD. The channel in LDMOSFET encloses a junction-type source and is believed to be an important parameter for determining the circuit operation of CMOS inverter. Two-dimensional TCAD MEDICI simulation is used to study hot-carrier effect, on-resistance Ron, breakdown voltage, and transient switching characteristic. The voltage-transfer characteristics and on-off switching properties are studied as a function of the channel length and doping levels. The digital logic levels of the output and input voltages are analyzed from the transfer curves and circuit operation. Study indicates that drain current significantly depends on the channel length rather than the LDD region, while the switching transient time is almost independent of the channel length. The high and low logic levels of the input voltage showed a strong dependency on the channel length, while the lateral substrate resistance from a latch-up path in the CMOS inverter was comparable to that of a typical CMOS inverter with a guard ring.

Switching Characteristics due to the Impurity Concentration and the Channel Length in Lateral MOS-controlled Thyristor (수평 구조의 MOS-controlled Thyristor에서 채널에서의 길이 및 불순물 농도에 의한 스위칭 특성)

  • Kim, Nam-Soo;Cui, Zhi-Yuan;Lee, Kie-Yong;Ju, Byeong-Kwon;Jeong, Tae-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • The switching characteristics of MOS-Controlled Thyristor(MCT) is studied with variation of the channel length and impurity concentration in ON and OFF FET channel. The proposed MCT power device has the lateral structure and P-epitaxial layer in substrate. Two dimensional MEDICI simulator and PSPICE simulator are used to study the latch-up current and forward voltage-drop from the characteristics of I-V and the switching characteristics with variation of channel length and impurity concentration in P and N channel. The channel length and N impurity concentration of the proposed MCT power device show the strong affect on the transient characteristics of current and power. The N channel length affects only on the OFF characteristics of power and anode current, while the N doping concentration in P channel affects on the ON and OFF characteristics.

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jo, Won-Ju;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Sign Reversal Channel Switching Method for Space-Frequency Block Code in Orthogonal Frequency Division Multiplexing System (직교 주파수 분할 다중화 시스템의 공간 주파수 블록 코딩에서의 부호 반전 채널 스위칭 기법)

  • Jung, Hyeok-Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.13-21
    • /
    • 2020
  • This paper proposes a sign reversal channel switching method in space-frequency block code for orthogonal frequency division multiplexing system. In case of sending source data on other antenna, it is necessary for the receiver to change combining method according to the channel variation. If one does not know the predefined channel switching sequence, it is not possible to decode the received data precisely. In transmit data symbols' exchanges for a channel switching, data symbols are exchanged according to a format of space-frequency block code. In this paper, we proposes a simple sign reversal method except exchanging data symbols between transmit antennas. It is shown that this method occurs another combining method for a simple encryption in the receiver.

Tree-based Multi-channel Communication with Interference Avoidance using Dynamic Channel Switching in Wireless Sensor Network

  • Mohd, Noor Islam;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1498-1505
    • /
    • 2009
  • In centralized control sensor network, tree-based multi-channel communication overcomes the recurrent channel switching and makes possible to transfer data simultaneously from different sources. In our paper, we propose a greedy algorithm named as NIT (Non-Intersecting Tree) that the trees can avoid inter-tree interference. We also propose channel switching technique by which trees can avoid link failure or area blocking due to external interference locally without rerunningthe algorithm and without interrupting the whole network. At first we applied our algorithm for a random topology and then we evaluate the performance of the network using NS-2 simulator. The results show that with the increasing of channel the throughputand delivery ratio are increased significantly. We got better performance than a using a recent proposed Tree-based Multi-Channel Protocol (TMCP).

Jeju Jong-Nang Channel Code III (제주 정낭(錠木) 채널 Code III)

  • Park, Ju-Yong;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.91-103
    • /
    • 2015
  • This paper presents "The 3-User NOR switching channel based on interference decoding with receiver cooperation" in succession to "Jeju Jong Nang channel code I, II". The Jeju Jong Nang code is considered as one of the earliest human binary coded communication (HBCC) in the world with a definite "1" or "0" binary symbolic analysis of switching circuits. In this paper, we introduce a practical example of interference decoding with receiver cooperation based on the three user Jong Nang NOR switching channel. The proposed system models are the three user Jong Nang (TUJN) NOR logic switching on-off, three-user injective deterministic NOR switching channel and Gaussian interference channel (GIC) with receiver cooperation. Therefore, this model is well matched to Shannon binary symmetric and erasure channel capacity. We show the applications of three-user Gaussian interference decoding to obtain deterministic channels which means each receiver cooperation helps to adjacent others in order to increase degree of freedom. Thus, the optimal sum rate of interference mitigation through adjacent receiver cooperation achieves 7 bits.

An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming (온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구)

  • Choi, Hyun-Seung;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.19-41
    • /
    • 2016
  • Recently, the proliferation of mobile devices such as smartphones and tablet personal computers and the development of information communication technologies (ICT) have led to a big trend of a shift from single-channel shopping to multi-channel shopping. With the emergence of a "smart" group of consumers who want to shop in more reasonable and convenient ways, the boundaries apparently dividing online and offline shopping have collapsed and blurred more than ever before. Thus, there is now fierce competition between online and offline channels. Ever since the emergence of online shopping, a major type of multi-channel shopping has been "showrooming," where consumers visit offline stores to examine products before buying them online. However, because of the growing use of smart devices and the counterattack of offline retailers represented by omni-channel marketing strategies, one of the latest huge trends of shopping is "webrooming," where consumers visit online stores to examine products before buying them offline. This has become a threat to online retailers. In this situation, although it is very important to examine the influencing factors for switching from online shopping to webrooming, most prior studies have mainly focused on a single- or multi-channel shopping pattern. Therefore, this study thoroughly investigated the influencing factors on customers switching from online shopping to webrooming in terms of both the "search" and "purchase" processes through the application of a push-pull-mooring (PPM) framework. In order to test the research model, 280 individual samples were gathered from undergraduate and graduate students who had actual experience with webrooming. The results of the structural equation model (SEM) test revealed that the "pull" effect is strongest on the webrooming intention rather than the "push" or "mooring" effects. This proves a significant relationship between "attractiveness of webrooming" and "webrooming intention." In addition, the results showed that both the "perceived risk of online search" and "perceived risk of online purchase" significantly affect "distrust of online shopping." Similarly, both "perceived benefit of multi-channel search" and "perceived benefit of offline purchase" were found to have significant effects on "attractiveness of webrooming" were also found. Furthermore, the results indicated that "online purchase habit" is the only influencing factor that leads to "online shopping lock-in." The theoretical implications of the study are as follows. First, by examining the multi-channel shopping phenomenon from the perspective of "shopping switching" from online shopping to webrooming, this study complements the limits of the "channel switching" perspective, represented by multi-channel freeriding studies that merely focused on customers' channel switching behaviors from one to another. While extant studies with a channel switching perspective have focused on only one type of multi-channel shopping, where consumers just move from one particular channel to different channels, a study with a shopping switching perspective has the advantage of comprehensively investigating how consumers choose and navigate among diverse types of single- or multi-channel shopping alternatives. In this study, only limited shopping switching behavior from online shopping to webrooming was examined; however, the results should explain various phenomena in a more comprehensive manner from the perspective of shopping switching. Second, this study extends the scope of application of the push-pull-mooring framework, which is quite commonly used in marketing research to explain consumers' product switching behaviors. Through the application of this framework, it is hoped that more diverse shopping switching behaviors can be examined in future research. This study can serve a stepping stone for future studies. One of the most important practical implications of the study is that it may help single- and multi-channel retailers develop more specific customer strategies by revealing the influencing factors of webrooming intention from online shopping. For example, online single-channel retailers can ease the distrust of online shopping to prevent consumers from churning by reducing the perceived risk in terms of online search and purchase. On the other hand, offline retailers can develop specific strategies to increase the attractiveness of webrooming by letting customers perceive the benefits of multi-channel search or offline purchase. Although this study focused only on customers switching from online shopping to webrooming, the results can be expanded to various types of shopping switching behaviors embedded in single- and multi-channel shopping environments, such as showrooming and mobile shopping.