• Title/Summary/Keyword: Channel Noise Time

Search Result 428, Processing Time 0.023 seconds

Inter-cell DCA Algorithm for Downlink Wireless Communication Systems (하향링크 무선 통신 시스템에서의 Inter-cell DCA 알고리즘)

  • Kim, Hyo-Su;Kim, Dong-Hoi;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.693-701
    • /
    • 2008
  • In OFDMA (Orthogonal Frequency Division Multiple Access) system that frequency reuse factor is 1, as the same channels in the neighborhood cells creates inter-cell co-channel interference which provides a resource underutilization problem, channel allocation schemes to minimize inter-cell interference have been studied. This paper proposes a new CNIR (Carrier to Noise and Interference Ratio)-based distributed Inter-cell DCA (Dynamic Channel Allocation) algorithm in the OFDMA environment with frequency reuse factor of 1. When a channel allocation is requested, if there is not a free channel in home cell or the available free channels in home cell do not satisfy a required threshold value, the proposed Inter-cell DCA algorithm finds CNIR values of available free channels in the neighborhood cells and then allocates a free channel with maximum CNIR value. Through the simulation results, we find that the proposed scheme decreases both new call block rate and forced termination rate due to new call generation at the same time because it increases channel allocation probability.

Channel Capacity of BLAST based on the Zero-Forcing criterion (Zero-Forcing 기반의 BLAST 채널 용량)

  • Lee, Heun-Chul;Kim, Hee-Jin;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.34-41
    • /
    • 2008
  • In this paper, we present an asymptotical analysis of channel capacity of Bell labs layered space-time (BLAST) architectures based on a zero-forcing (ZF) criterion in the sense of signal-to-noise ratio (SNR). We begin by introducing a new relationship related to multi-input multi-output (MIMO) channel capacity. We prove that Diagonal Bell Labs Space-Time (DBLAST) attains the lower bound for MIMO channels when interference nulling is carried out based on the ZF-criterion. An exact closed-form expression for the probability density function of the channel capacity is analyzed. Based on the asymptotic behavior of the channel capacity of each layer, closed-form expressions for the asymptotic ergodic capacity are derived for BLAST. Based on the analysis presented in this paper, we gain an insight on the channel capacity behavior for a MIMO channel. Computer simulation results have verified the validity and accuracy of the proposed analysis for a wide range of antenna array sizes.

A 6.4-Gb/s/channel Asymmetric 4-PAM Transceiver for Memory Interface

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.129-131
    • /
    • 2011
  • An 6.4-Gb/s/channel 4-PAM transceiver is designed for a high speed memory application. The asymmetric 4-PAM signaling scheme is proposed to increase the voltage and time margins, and reduces the reference noise effect in a receiver by 33%. To reduce ISI in a channel, 1-tap pre-emphasis of a transmitter is used. The proposed asymmetric 4-PAM transceiver was implemented by using 0.13um 1-poly 6-metal CMOS process with 1.2V supply. The active area and power consumption of 1-charmel transceiver including a PLL are $0.294um^2$ and 6mW, respectively.

  • PDF

Carrier Frequency Offset Estimation Method for Single-Carrier MIMO Systems (단일 반송파 MIMO 시스템 기반의 PN 부호열을 이용한 반송파 주파수 오차 추정 기법)

  • Oh, Jong-Kyu;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.864-875
    • /
    • 2012
  • In this paper, we propose a carrier frequency offset estimation method for single-carrier MIMO systems. In the proposed method, phase rotated PN (Pseudo-Noise) sequences are transmitted to prevent a cancelling out of partial PN sequences. After removing a modulation of received PN sequences by multiplying of complex conjugated PN Sequences which are locally generated in receiver, a CFO (Carrier Frequency Offset) is accurately estimated by employing L&R method which is a kind of ML (Maximum Likelihood) estimation algorithm and uses multiple auto-correlatos. In addition, the frequency offset estimation scheme by using channel state information is proposed for accurate CFO estimation in time-varying Rayleigh channel. By performing computer simulations, MSE (Mean Square Error) performance of proposed method is almost same as MSE performance of SISO systems in AWGN channel. Moreover, MSE Performance of proposed method with using channel information is higher than MSE performances of SISO system and conventional method in time-varying Rayleigh channel.

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

Massive MIMO with Transceiver Hardware Impairments: Performance Analysis and Phase Noise Error Minimization

  • Tebe, Parfait I.;Wen, Guangjun;Li, Jian;Huang, Yongjun;Ampoma, Affum E.;Gyasi, Kwame O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2357-2380
    • /
    • 2019
  • In this paper, we investigate the impact of hardware impairments (HWIs) on the performance of a downlink massive MIMO system. We consider a single-cell system with maximum ratio transmission (MRT) as precoding scheme, and with all the HWIs characteristics such as phase noise, distortion noise, and amplified thermal noise. Based on the system model, we derive closed-form expressions for a typical user data rate under two scenarios: when a common local oscillator (CLO) is used at the base station and when separated oscillators (SLOs) are used. We also derive closed-form expressions for the downlink transmit power required for some desired per-user data rate under each scenario. Compared to the conventional system with ideal transceiver hardware, our results show that impairments of hardware make a finite upper limit on the user's downlink channel capacity; and as the number of base station antennas grows large, it is only the hardware impairments at the users that mainly limit the capacity. Our results also show that SLOs configuration provides higher data rate than CLO at the price of higher power consumption. An approach to minimize the effect of the hardware impairments on the system performance is also proposed in the paper. In our approach, we show that by reducing the cell size, the effect of accumulated phase noise during channel estimation time is minimized and hence the user capacity is increased, and the downlink transmit power is decreased.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

Comparison Study of Channel Estimation Algorithm for 4S Maritime Communications (4S 해상 통신을 위한 채널 추정 알고리즘 비교 연구)

  • Choi, Myeong Soo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.288-295
    • /
    • 2013
  • In this paper, we compare the existing channel estimation technique for 4S (Ship to Ship, Ship to Shore) maritime communications under AWGN channel model, Rician fading channel model, and Rayleigh fading channel model respectively. In general, the received signal is corrupted by multipath and ISI (Inter Symbol Interference). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used. The simulation is performed in MATLAB. In this simulation, we use the popular estimation algorithms, LMS (Least Mean Square) and RLS (Recursive Least-Squares) are compared with respect to AWGN, Rician and Rayleigh channels.

An efficient Channel Estimation Technique for Space-Time Coded OFDM Systems (시.공간 부호화된 OFDM 시스템의 효율적인 채널추정기법)

  • Jeon, Won-Gi;Baek, Gyeong-Hyeon;Jo, Yong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1499-1509
    • /
    • 2000
  • In this paper, we propose an efficient channel estimation technique for space-time coded orthogonal frequency-division multiplexing (OFDM) systems with transmitter and receiver diversity. The proposed technique estimates uniquely all channel frequency responses needed in a decoder of space-time coded OFDM systems using "comb-type" raining symbols. The computational complexity of the proposed technique is reduced dramatically, compared with the previous minimum mean-squared error (MMSE) technique, due to the processing is made all in the frequency-domain. Also, several other techniques for mitigating random noise effect and tracking channel variation are discussed to further improve the performance of the proposed approach. The performances of the proposed approach are demonstrated by computer simulation for mobile wireless channels. channels.

  • PDF

Design of Downlink Channel for Transportable KOMPSAT Ground Station Using Sub-Carrier Signal (부 반송파를 사용하는 이동형 다목적실용위성 관제국에 대한 하향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2009
  • This paper describes the downlink design of a transportable small-sized KOMPSAT ground station using sub-carrier signal. Based on the analysis of the transmission modes of satellite real-time telemetry and range measurement signals, the downlink channel design of KOMPSAT ground station using sub-carrier signal was processed. By considering the threshold signal-to-noise ratio of real-time 2 kbps telemetry signal and the required signal-to-noise ratio for satellite range measurement, the small-sized KOMPSAT downlink channel with G/T value of 6.5 dB/K was designed. The real G/T of implemented ground station was proven to be 6.62 dB/K when measured using the Sun. Moreover, through interface test with KOMPSAT, the ground station has shown the required link performance for real-time telemetry acquisition using sub-carrier and was consequently evaluated to be adequate for a transportable small-sized KOMPSAT ground station.