• Title/Summary/Keyword: Changma

Search Result 85, Processing Time 0.023 seconds

The Regionality of the Variation of Summer Precipitation in Korea (한국의 여름 강수량 변동의 지역성)

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.139-152
    • /
    • 2000
  • The regional characteristics of summer precipitation in Korea are analyzed with the data observed in 66 stations from 1973 to 1997, using the cluster analysis method. In the phenomena of summer precipitation, the rain-rich regions lie in the south coast region, the northern part of Kyonggi Province, and Yongdong region. The monthly precipitation is mostly influenced by Changma fronts and cyclons in June, Changma fronts in July, typhoons in August, and all of typhoons, Changma, and cyclons in September. The increasing and decreasing trends of the monthly precipitation are equally divided with regard to both regional groups and monthly distribution in the cluster analysis. Especially such trends are considerably clear in the rain-rich regions. The increasing tendency is predominant in the northern part of Kyonggi Province and Yongdong region, while the decreasing trend and the periodicity are noted in the south coast region and Cheju Island. The variation of the monthly precipitation is shown to be great in the rain-rich regions, while it is not much associated with the rain-scare regions. Also, the variation is the greatest in September, while the least variation is shown in July.

  • PDF

An Economic Value for the First Precipitation Event during Changma Period (장마철 첫 강수의 경제적 가치)

  • Seo, Kyong-Hwan;Choi, Jin-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • This study evaluates the economic values for the several first precipitation events during Changma period. The selected three years are 2015, 2019, and 2020, where average precipitation amounts across the 58 Korean stations are 12.8, 20.1 and 13.3 mm, respectively. The four categories are used to assess the values including air quality improvement, water resource acquisition/accumulation, drought mitigation, and forest fire prevention/recovery. Economic values for these three years are estimated 50~150 billion won. Among the four factors considered, the effect of air quality improvement is most highly valued, amounting to 70 to 90% of the total economic values. Wet decomposition of air pollution (PM10, NO2, CO, and SO2) is the primary reason. The next valuable element is water resource acquisition, which is estimated 9~15 billion won. Effects of drought mitigation and fire prevention are deemed relatively small. This study is the first to estimate the value of the precipitation events during Changma onset. An analysis for more Changma years will be performed to achieve a more reliable estimate.

Classification of Atmospheric Vertical Environment Associated with Heavy Rainfall using Long-Term Radiosonde Observational Data, 1997~2013 (장기간(1997~2013) 라디오존데 관측 자료를 활용한 집중호우 시 연직대기환경 유형 분류)

  • Jung, Sueng-Pil;In, So-Ra;Kim, Hyun-Wook;Sim, JaeKwan;Han, Sang-Ok;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.611-622
    • /
    • 2015
  • Heavy rainfall ($>30mm\;hr^{-1}$) over the Korean Peninsula is examined in order to understand thermo-dynamic characteristics of the atmosphere, using radiosonde observational data from seven upper-air observation stations during the last 17 years (1997~2013). A total of 82 heavy rainfall cases during the summer season (June-August) were selected for this study. The average values of thermo-dynamic indices of heavy rainfall events are Total Precipitable Water (TPW) = 60 mm, Convective Available Potential Energy (CAPE) = $850J\;kg^{-1}$, Convective Inhibition (CIN) = $15J\;kg^{-1}$, Storm Relative Helicity (SRH) = $160m^2s^{-2}$, and 0~3 km bulk wind shear = $5s^{-1}$. About 34% of the cases were associated with a Changma front; this pattern is more significant than other synoptic pressure patterns such as troughs (22%), migratory cyclones (15%), edges of high-pressure (12%), typhoons (11%), and low-pressure originating from Changma fronts (6%). The spatial distribution of thermo-dynamic conditions (CAPE and SRH) is similar to the range of thunderstorms over the United States, but extreme conditions (supercell thunderstorms and tornadoes) did not appear in the Korean Peninsula. Synoptic conditions, vertical buoyancy (CAPE, CIN), and wind parameters (SRH, shear) are shown to discriminate among the environments of the three types. The first type occurred with high CAPE and low wind shear by the edge of the high pressure pattern, but Second type is related to Changma front and typhoon, exhibiting low CAPE and high wind shear. The last type exhibited characteristics intermediate between the first and second types, such as moderate CAPE and wind shear near the migratory cyclone and trough.

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Characteristics of Meteorological Disasters in the Southern Coast of Korea (우리나라 남해안의 기상재해 특성)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.34-35
    • /
    • 2010
  • The meteorological disasters in the southern coast of Korea were analyzed for 20years from 1989 to 2008 using the Korea meteorological administration's data. The results are summarized as follows. Yearly mean number and the total number of meteorological disasters in the southern coast of Korea during 20 years are 7.5 and 149, respectively. The highest number appears in July followed by August and the third is September. The meteorological disasters from July to September occupied about 42%. The seasonal mean number is most in summer(about 39% of all), the next orders are the autumn, winter and spring. The meteorological disasters in summer are mainly caused by typhoon and changma. The meteorological disasters of a great scale occurred by typhoons(for example, 9112 GLADYS, 0215 RUSA and 0314 MAEMI) which strike in the southern coast of Korea.

  • PDF

The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석: Part I. 라디오존데 관측 자료 평가 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.213-226
    • /
    • 2009
  • In order to investigate the characteristics of Changma over the Korean peninsula, KEOP-2007 IOP (Intensive Observing Period) was conducted from 15 June 2007 to 15 July 2007. KEOP-2007 IOP is high spatial and temporal radiosonde observations (RAOB) which consisted of three special stations (Munsan, Haenam, and Ieodo) from National Institute of Meteorological Research, five operational stations (Sokcho, Baengnyeongdo, Pohang, Heuksando, and Gosan) from Korea Meteorological Administration (KMA), and two operational stations (Osan and Gwangju) from Korean Air Force (KAF) using four different types of radiosonde sensors. The error statistics of the sensor of radiosonde were investigated using quality control check. The minimum and maximum error frequency appears at the sensor of RS92-SGP and RS1524L respectively. The error frequency of DFM-06 tends to increase below 200 hPa but RS80-15L and RS1524L show vice versa. Especially, the error frequency of RS1524L tends to increase rapidly over 200 hPa. Systematic biases of radiosonde show warm biases in case of temperature and dry biases in case of relative humidity compared with ECMWF (European Center for Medium-Range Weather Forecast) analysis data and precipitable water vapor from GPS. The maximum and minimum values of systematic bias appear at the sensor of DFM-06 and RS92-SGP in case of temperature and RS80-15L and DFM-06 in case of relative humidity. The systematic warm and dry biases at all sensors tend to increase during daytime than nighttime because air temperature around sensor increases from the solar heating during daytime. Systematic biases of radiosonde are affected by the sensor type and the height of the sun but random errors are more correlated with the moisture conditions at each observation station.

An Analysis of the Temporal Pattern according to Hydrologic Characteristics of Short-Duration Rainfall (단시간강우의 수문학적 특성에 따른 시간분포 분석)

  • Lee, Jung-Sik;Shin, Chang-Dong;Chang, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.57-68
    • /
    • 2006
  • The objective of this study is to analyze the temporal pattern characteristic of short-duration rainfall defined as a rainfall durations of 6 hours or less by the Huff's 4th quartile distribution. To analyze the temporal pattern characteristic of short-duration rainfall, the rainfall data are classified by rainfall duration and rainfall type(Changma, Typhoon, Severe rain storm, Frontal storm) and change of rainfall segment. Also, the results of this study compared with result of research work of Korea Institute of Construction Technology(1989) and Ministry of Construction & Transportation(2000). The conclusions of this study are as follows; (1) Short-duration rainfall with duration of 6 hours or less is found to be most prevalent frist-quartile storms. (2) In the case of rainfall type, Changma and Severe rain storms and Frontal storm is found second-quartile storms, and Typhoon is found third-quartile storms. (3) In the result by change of sixth segment storms, the type of temporal pattern of rainfall is found to be most prevalent two sixth parts, (4) Comparative analysis of the results shows that shapes of the dimensionless cumulative curves and values are different from those of existing researches.

A Comparative Study of Rain Intensities Retrieved from Radar and Satellite Observations: Two Cases of Heavy Rainfall Events by Changma and Bolaven (TY15) (장마와 볼라벤(태풍 15호)에 동반된 집중호우 레이더관측과 위성관측 자료로부터 도출한 강우강도의 비교연구)

  • Lee, Dong-In;Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.569-582
    • /
    • 2012
  • The heavy rainfalls caused large property damages and human casualties. For example, Changma caused 0.25 billion dollars in damages and 57 deaths and 112 missing by accompanying the torrentially convective heavy rainfall in Seoul, 2011. In addition, TY15 (Bolaven) caused a small damage by bringing a relatively small amount of rainfall and strong wind in Gwanju, 2012. The investigation and analyses of these mesoscale processes of rainfall events for different physical properties using KLAPS for weather environments of the above cases were performed. These typical and ideal meoscale systems by better and more favorable cloud systems were chosen to retrieve rain intensity from Radar and Chullian data. The quantitative rain intensities of Radar and Chullian differ greatly from the ground-based gauge values with underestimating over 50 mm/hr at the peak time of hourly maximum rain intensity about over than 85 mm/hr. However, the Radar rain intensity demonstrated approximately lower than 35 mm/hr, and the Chullian rain intensity less than 60 mm/hr for Changma in Seoul, 2011. For typhoon (TY15, Bolaven) in Gwangju, similarly, the quantitative rain intensities of Radar and Chullian differ from the ground-based gauge values. At the peak time, the hourly maximum rain intensity of ground-based gauge was more than 15 mm/hr. However, the Radar rain intensity showed lower than 5 mm/hr, and the Chullian rain intensity lower than 10 mm/hr. Regarding the above two cases of typhoon and Changma, even though Radar and Chullian rain intensities have been underestimated when compared to the ground-based rain intensity, the distributions of time scale features of both Radar and Chullian rain intensities still delineated a similar tendency of rain intensity distribution of the ground-based gauge data.

A Case Study on the Development of an Elevated Subsidence Inversion Over a Surface Low Pressure System

  • Kim, Kyung-Eak;Ko, Hye-Young;Heo, Bok-Haeng;Ha, Kyung-Ja
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.531-538
    • /
    • 2010
  • This study presents the development of an elevated subsidence inversion over a surface low pressure system, which was formed along the Changma front or Meiu-Baiu front. The results of our analysis strongly suggest that the inversion is dissimilar to those formed in anticyclonic situations but is instead similar to the onion-shaped sounding found in wake low. The present analysis indicates that the observed elevated inversion resulted from the intrusion of stratospheric air associated with tropopause folding.