• Title/Summary/Keyword: Changes of state of water

Search Result 366, Processing Time 0.031 seconds

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Studies on the Optimal Conditions of Feeding and Light Supply for the Long-Term Cultivation of Meiofauna in the Laboratory (중형저서동물의 실험실 내 장기 배양을 위한 먹이 및 광원의 최적 조건 연구)

  • SHIN, AYOUNG;KIM, DONGSUNG;KANG, TEAWOOK;OH, JE HYEOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.26-41
    • /
    • 2020
  • In order to culture a life for the physiological and ecological research of the meiofauna, this study aimed to identify the most ideal condition in which the meiofauna can be cultured within a laboratory by setting various environmental conditions. The sediment deposits and seawater were collected from the intertidal zone in Mallipo of the west coast. A aquarium in which the internal environment can be controlled by constantly maintaining the temperature and humidity was fabricated and the culture experiments of the collected meiofauna were conducted together with the sea water and sediment deposits collected. The experiment 1 was conducted after establishing the similar environment as the collecting location. Under the same condition as the experiment 1, the experiment 2 verified a difference between when live foods were supplied and were not. In the experiment 3, the changes in the meiofauna colony were checked according to with or without light and live foods. In the results of culturing experiments, the habitat density and the number of appeared classification groups of the meiofauna colony were relatively higher both in the water tank with supplying the live foods and under the condition of having light in 12-hour cycle than those in the aquarium without live foods and under no light condition. In addition, the habitat density of meiofauna cultured within a laboratory exhibited relatively higher value than that under the natural state.

Study on the Damage Mechanism by Salt of White Porcelain Figurine in Underglaze Iron (백자 철화 인물형 명기의 염 손상 메커니즘 연구)

  • Lee, Sun Myung;Jin, Hong Ju;Yun, Ji Hyeon;Kwon, Oh Young
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.368-382
    • /
    • 2020
  • It was confirmed that a white porcelain figurine in underglaze iron was damaged after exhibition. This study analyzes the current state of salt damage on the artifact and identifies the factors contributing to its deterioration by examining the material characteristics of the artifact and exhibition environment. The analysis will thus assist in preparing a conservation scheme for artifacts. The crystallized carbonate on the surface of the white porcelain figurine is a water-soluble alkali salt with high hygroscopicity and high solubility in water. This solubility increases as the temperature increases. The figurine was low-fired at approximately 1000℃. A lead glaze was applied, and thin cracks were formed on the glazed surface, indicating poor surface properties. Our analysis suggested that the showcase used in the exhibition likely created a moist environment resulting from condensation, as it was exposed to high temperature and relative humidity, particularly in comparison to the exhibition room where the temperature was regulated using an air conditioner. In addition, the artifacts in the showcase were exposed to sudden changes in temperature and relative humidity as the air conditioner was repeatedly turned on and off. Therefore, it can be deduced that the soluble salt remaining on the white porcelain figurine moved toward the surface of the relatively weak glaze as a result of the temperature, and the crystallized salt exacerbated surface damage as the moisture evaporated in a dry environment.

Korean Flood Vulnerability Assessment on Climate Change (기후변화에 따른 국내 홍수 취약성 평가)

  • Lee, Moon-Hwan;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.653-666
    • /
    • 2011
  • The purposes of this study are to suggest flood vulnerability assessment method on climate change with evaluation of this method over the 5 river basins and to present the uncertainty range of assessment using multi-model ensemble scenarios. In this study, the data related to past historical flood events were collected and flood vulnerability index was calculated. The vulnerability assessment were also performed under current climate system. For future climate change scenario, the 39 climate scenarios are obtained from 3 different emission scenarios and 13 GCMs provided by IPCC DDC and 312 hydrology scenarios from 3 hydrological models and 2~3 potential evapotranspiration computation methods for the climate scenarios. Finally, the spatial and temporal changes of flood vulnerability and the range of uncertainty were performed for future S1 (2010~2039), S2 (2040~2069), S3 (2070~2099) period compared to reference S0 (1971~2000) period. The results of this study shows that vulnerable region's were Han and Sumjin, Youngsan river basins under current climate system. Considering the climate scenarios, variability in Nakdong, Gum and Han river basins are large, but Sumjin river basin had little variability due to low basic-stream ability to adaptation.

Plasma Cosmetic Container Suitability (플라즈마 화장품 용기 적합성)

  • Ha Hyeon Jo;You-Yeon Chun;Hyojin Heo;Sang Hun Lee;Lei Lei;Ye Ji Kim;Byeong-Mun Kwak;Mi-Gi Lee;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • For plasma cosmetics, it is important to ensure the long-term stability of plasma in the formulation. This study examined the suitability of containers for efficient plasma cosmetics development. By varying the surface area covered by the plasma, 4 cm2, 25 cm2, 75 cm2, and 175 cm2 containers were injected with cosmetic plasma, and the amount of nitric oxide (NO), the main active species of nitrogen plasma, was analyzed. As a result, the surface area and stability exposed to plasma tended to be inversely proportional, and it was most effective in a 4 cm2 container. Furthermore, 25 mm, 40 mm, and 50 mm vials were treated with plasma, which resulted in relative long-term stability of NO at 25 mm, a smaller surface area of the container exposed to air. Water mist and stratified mist were selected as cosmetic formulations, and NO plasma was injected into the water layer to observe the changes in formulation properties and the state of the injected NO plasma. In both formulations, the amount of NO plasma injected was about 1.5 times higher in the water phase mist than in the stratified mist, and the stratified mist gradually decreased with time and was found to disappear after 3 weeks. The stability of the nitrogen plasma was studied at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃). As a result, it was found that the water mist did not affect the stability, but the stratified mist observed a color change in the oil phase layer. Overall, this study demonstrates the container suitability of nitrogen plasma and suggests the importance of ensuring the stability of injected nitrogen plasma in cosmetic formulations.

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

Ecophysiological Studies on the Water Relations of Economic Tree Species - Temporal Changes of Stomatal Responses to Soil Moisture Regimes and Exogenous Abscisic Acid in Oaks and Ash - (주요 경제 수종의 수분 특성에 관한 생리생태학적 연구 - 토양수분 조건 및 ABA 처리에 따른 참나무류와 물푸레나무 기공의 시계열적인 변화 반응 -)

  • Kwon, Ki Won;Lee, Jeoung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.410-423
    • /
    • 1994
  • Seasonal and diurnal changes of stomatal diffusive resistance(S.D.R.) and transpiration rate(T.R.) were investigated for determining the ecophysiological water relations of economic tree species subjected to chronic water stress or exogenous abscisic acid treatment. Four species of oaks including Quercus serrata, Q. mongolica. Q. acutissima, and Q. variabilis were used as the experimental materials and also Fraxinus rhynchophylla was studied together with oaks. Stomatal diffusive resistances were repeatedly measured on the containerized 1-0 year seedlings subjected to two kinds of soil moisture regime (wet and dry) in June, August, and September by LI-1600 Steady State Porometer of LI-Cor, Inc.. Exogenous abscisic acid (ABA) solutions of 0.5 mM and 0.05 mM in July and August, respectively, were absorbed into shoots cut from the containerized seedlings for determining their effects on stomatal behavior and transpiration. Most of measurements in stomatal diffusive resistance maintained about 5 s/cm in the morning after sunrise despite of different treatments. But the values fluctuated frequently to high level above 20 s/cm through the afternoon until sunset in the seedlings subjected to dry soil moisture regime. Despite of various treatments and environmental conditions, stomatal diffusive resistances of Q. variabilis were more stable than those of Q. serrata or Q. acutissima. Their values of F. rhynchophylla changed more irregularly in comparison with those of oak species. Exogenous abscisic acid absorbed into shoots cut from seedlings increased stomatal diffusive resistance obviously in most of the species studied. The stomatal responses to abscisic acid treatment were more sensitive in July especially in Q. serrata than in Q. variabilis and Q. acutissima. But the effects of ABA treatment were presented more remarkably in Q. acutissima in August. The responses to abscisic acid were not certain in F. rhynchophylla because of their various fluctuation patterns.

  • PDF

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.

Development of Cotton Farming and Transformation of Rural Area in Sanliurfa Prefecture, Turkey (터키 샹르울파주 목화농업의 전개와 지역사회의 변화)

  • Kang, Sukkyeong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.87-111
    • /
    • 2013
  • Regional disparities between eastern and western regions is the most of serious problem for balanced regional development in Turkey. The Southeastern Anatolia Project (GAP) is being implemented to eliminate these regional development disparities. The work that was initially planned as predominantly for hydraulic energy production to utilize water resources of the Tigris and Euphrates rivers more effectively was later transformed into an integrated multi-sector regional development project. This study noted that this region had very limited cash crop production because of the constraints of semi-arid climate of the southeastern region, however, later, it has changed Turkey's major cotton producing region since Southeastern Anatolia Project carried out. Therefore, this study investigated background, process, and content of the Southeastern Anatolia Project with respect to high cotton productivity in this region and examined the dynamic changes of cotton productivity in this region. In addition, Sanliurfa prefecture is one of the main development axes of the Southeastern Anatolia Project, because government investments are concentrated on this prefecture. Therefore, this study examined the background and process of cotton farming growth in this prefecture. In 2011, Sanliurfa prefecture produced 37.6% of Turkey's total cotton production. This is mainly due to agricultural infrastructure expansion such as land consolidation, irrigation, roads and farm roads. Also, it is one of the main factor that subsidies paid to farmers for cotton cultivation. The introduction of irrigation has dramatically changed the direction of seasonal migration of this area. Prior to irrigation, this area had a serious social issue about out-migration for seasonal labor to other areas. However, the introduction of irrigation made this area that changed to in-migration and intramigration for cotton cultivation. Irrigation water is supplied to farmers through the WUAs (Water User Associations) that handed over irrigation water management, operation from DSI (General Directorate of State of Hydraulic Works). However, the WUAs are under the influence of Ashiret, a traditional feudal social structure. Because of this reason, it does not have an efficient management for farmers. Also, it is one of the reasons that this area does not have autonomous farmer organization.

  • PDF

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.