DOI QR코드

DOI QR Code

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region

열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석

  • Yoon, Sun-kwon (Climate Research Department, APEC Climate Center) ;
  • Kim, Jong-Suk (Department of Civil Engineering, The University of Seoul) ;
  • Lee, Tae-Sam (Department of Civil Engineering, Gyeongsang National University) ;
  • Moon, Young-IL (Department of Civil Engineering, The University of Seoul)
  • 윤선권 (APEC 기후센터 연구본부 기후변화연구팀) ;
  • 김종석 (서울시립대학교 공과대학 토목공학과) ;
  • 이태삼 (경상대학교 공과대학 토목공학과) ;
  • 문영일 (서울시립대학교 공과대학 토목공학과, 도시홍수연구소)
  • Received : 2015.03.11
  • Accepted : 2015.09.08
  • Published : 2016.02.01

Abstract

In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.

본 연구는 열대 태평양지역 ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) 패턴 변화에 따른 우리나라 여름철(June-September, JJAS) 지역 수문변동 영향 분석을 위하여, 우리나라 5대강 113개 중권역의 강수량과 유출량 자료를 대상으로 합성편차 분석(Composit Analysis, CA)과 Student's t-test에 의한 유의성 검정을 실시하였다. 분석 결과, 유역별로 다소 차이는 있으나 전반적으로 WP (Warm-Pool) El $Ni{\tilde{n}}o$ 해에는 평년에 비하여 강수량과 유출량의 증가 특성이 뚜렷이 나타났으며, CT (Cold-Tongue) El $Ni{\tilde{n}}o$ 해에는 주로 감소하는 경향이, La $Ni{\tilde{n}}a$ 해에는 다소 증가 또는 평년 상태를 유지하는 것을 분석되었다. 또한 백분위 기후값 편차의 산포도분석 결과 여름철 강수량의 증가/감소에 따른 유출량 증 감의 선형적 분포특성을 확인할 수 있었으며, 산포도의 중심은 WP El $Ni{\tilde{n}}o$ 해에는 +17.93%, +26.99%, CT El $Ni{\tilde{n}}o$ 해에는 -8.20%, -15.73%, 그리고 La $Ni{\tilde{n}}a$ 해에는 +8.89%, +15.85%로 분석되었다. 본 연구의 결과는 El $Ni{\tilde{n}}o$ La $Ni{\tilde{n}}a$ 등 열대 태평양 지역 기후현상이 뚜렷한 시기의 우리나라 수자원 장기예측의 불확실성을 줄여 주어 유역차원의 안정적인 중 장기 물공급 전망 등 수방정책지원을 위한 참고자료로 활용이 가능할 것이다.

Keywords

References

  1. Ashok, K. and Yamagata, T. (2009). "Climate change: The El Nino with a difference." Nature, Vol. 461, pp. 481-484. https://doi.org/10.1038/461481a
  2. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. and Yamagata, T. (2007). "El nino modoki and its possible teleconnection." Journal Geophys. Res., Vol. 112, C11007, doi:10.1029/2006JC003798.
  3. Bureau of Meteorology (BOM) (2014). Available at: http://www.bom.gov.au/ (Accessed: November 2014).
  4. Cha, E. J., Jhun, J. G. and Chung, H. S. (1999). "A study on characteristics of climate in south Korea for El Nino/La Nina Years." Asia-Pacific Journal Atmos. Sci. Vol. 35, No. 1, pp. 98-117 (in Korean).
  5. Dressler, K. A., Leavesley, G. H., Bales, R. C. and Fassnacht, S. R. (2006). "Evaluation of girdded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model." Hydrol. Processes, Vol. 20, pp. 673-688. https://doi.org/10.1002/hyp.6130
  6. Feng, J., Chen, W., Tam, C. Y. and Zhou, W. (2010) "Different impacts of El Nino and El Nino Modoki on China rainfall in the decaying phases." Int. Journal Climatol., Vol. 31, pp. 2091-2101.
  7. Horel, J. D. and Wallace, J. M. (1981). "Planetary-scale atmospheric phenomena associated with the Southern Oscillation." Mon. Weather Rev., Vol. 109, pp. 813-829. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
  8. Intergovernmental Panel on Climate Change (IPCC) (2007). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 1-594.
  9. Kang, I. S. (1998). "Relationship between El-Nino and Korean Climate Variability." Asia-Pacific Journal Atmos. Sci., Vol. 34, No. 3, pp. 390-396 (in Korean).
  10. Kao, H. Y. and Yu, J. Y. (2009). "Contrasting eastern-Pacific and central-Pacific types of ENSO." Journal Climate, Vol. 22, pp. 615-632. https://doi.org/10.1175/2008JCLI2309.1
  11. Kim, J. S., Jain, S. and Yoon, S. K. (2012a). "Warm season stream flow variability in the Korean Han River Basin: Links with atmospheric teleconnections." Int. Journal Climatol., Vol. 32, pp. 635-640. https://doi.org/10.1002/joc.2290
  12. Kim, J. S., Zhou, W., Wang, X. and Jain, S. (2012b). "El nino modoki and the summer precipitation variability over south Korea: A Diagnostic Study." Journal of the Meteorological Society of Japan, Vol. 90, No. 5, pp. 673-684. https://doi.org/10.2151/jmsj.2012-507
  13. Korean Meteorological Administration (KMA) (2012). Climate Change Prediction Report over the Korean Peninsula, Report of National Institute of Meteorological Research, Publication Number: 11-1360000-000861-01, pp. 1-153.
  14. Kug, J. S., Ahn, M. S., Sung, M. K., Yeh, S. W., Min, H. S. and Kim, Y. H. (2010). "Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula." Asia-Pacific Journal Atmos. Sci., Vol. 46, pp. 467-474.
  15. Kug, J. S., Jin, F. F. and An, S. I. (2009). "Two types of El Nino events: Cold tongue El Nino and warm pool El Nino." Journal Climate, Vol. 22, pp. 1499-1515. https://doi.org/10.1175/2008JCLI2624.1
  16. Leavesley, G. H., Lichty, R. W., Troutman, B. M. and Saindon, L. G. (1983). Precipitation-Runoff Modeling System: User's Manual, Water Resources Investigations: 83-4238, U.S. Geological Survey, Denver, Colorado.
  17. Lee, T. and Jeong, C. S. (2014) "Frequency analysis of nonidentically distributed hydrometeorological extremes associated with large-scale climate variability applied to south Korea." Journal Appl. Meteor. Climatol., Vol. 53, No. 5, pp. 1193-1212. https://doi.org/10.1175/JAMC-D-13-0200.1
  18. Moon, Y. L., Kwon, H. H. and Kim, D. K. (2005). "A study of relationships between the sea surface temperatures and rainfall in Korea." Journal Korea Water Resour. Assoc., Vol. 38, No. 12, pp. 995-1008 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.12.995
  19. Na, H., Jang, B. G., Choi, W. M. and Kim, K. Y. (2011). "Statistical simulations of the future 50-year statistics of cold-tongue El Nino and warm-pool El Nino." Asia-Pacific Journal Atmos. Sci., Vol. 47, pp. 223-233.
  20. National Oceanic and Atmospheric Administration (NOAA), National Weather Service Climate Prediction Center. (2014). Available at: http://www.cpc.ncep.noaa.gov/data/indices/ (Accessed: November 2014).
  21. Oh, T. S. and Moon, Y. I. (2010). "A study on the analysis of the relationship between sea surface temperature and monthly rainfall." Journal Korea Water Resour. Assoc., Vol. 43, No. 5, pp. 471-482 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.5.471
  22. Piechota, T. C. and Dracup, J. A. (1996). "Drought and regional hydrologic variation in the United States: Associations with the El Nino-Southern Oscillation." Water Resour. Res., Vol. 32, pp. 1359-1373. https://doi.org/10.1029/96WR00353
  23. Piechota, T. C., Chiew Francis, H. S., Dracup, J. A. and McMachon. T. A. (1998). "Seasonal streamflow forecasting in eastern Australia and the El Nino-Southern Oscillation." Water Resour. Res., Vol. 34, pp. 3035-3044. https://doi.org/10.1029/98WR02406
  24. Pizarro, G. and Lall, U. (2002). "El Nino-induced flooding in the U.S. West: What can we expect?" Eos Trans. Amer. Geophys. Union, Vol. 83, pp. 349-352.
  25. Pradhan, P. K., Preethi, B., Ashok, K., Krishna, R. and Sahai, A. K. (2011). "Modoki, Indian Ocean Dipole, and western North Pacific typhoons: Possible implications for extreme events." Journal Geophys. Res., Vol. 116, D18108, doi:10.1029/2011JD015666.
  26. Ren, H. L. and Jin, F. F. (2011). "Nino indices for two types of ENSO." Geophys. Res. Lett., Vol. 38, L04704, doi:10.1029/2010GL046031.
  27. Son, C. Y., Kim, J. S., Moon, Y. I. and Lee, J. H. (2014). "Characteristics of TC-induced precipitation over Korean River Basins associated with three evolution patterns of Central-Pacific El Nino." Stoch. Environ. Res. Risk Assess., Vol. 28, No. 5, pp. 1147-1156. https://doi.org/10.1007/s00477-013-0804-0
  28. Trenberth, K. E. (1997). "The definition of El Nino." Bull. Amer. Meteor. Soc., Vol. 78, No. 12, pp. 2771-2777. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
  29. Wang, B., Wu, R. and Fu, X. (2000). "Pacific-East Asia Teleconnection: How Does ENSO Affect East Asian Climate?" Journal Climate, Vol. 13, pp. 1517-1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  30. Water Management Information System (WAMIS). (2014). Available at: http://wamis.go.kr/eng/ (Accessed: November 2014).
  31. Weng, H., Ashok, K., Behera, S., Rao, S. and Yamagata, T. (2007). "Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific rim during boreal summer." Climate Dyn., Vol. 29, pp. 113-129. https://doi.org/10.1007/s00382-007-0234-0
  32. Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P. and Jin, F. F. (2009). "El Nino in a changing climate." Nature, Vol. 461, pp. 511-514. https://doi.org/10.1038/nature08316
  33. Yoon, J. H. and Yeh, S. W. (2009). "Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Nino." Ocean and Polar Research, Vol. 31, No. 1, pp. 51-61 (in Korean). https://doi.org/10.4217/OPR.2009.31.1.051
  34. Yoon, S. K. (2013). Hydrometeorological Variability over the Korean Peninsula by ENSO Pattern Change and Typhoon Activities and its Assessment for Integrated Flood Risk., APEC Climate Center Technical Report, pp. 1-90 (in Korean).
  35. Yoon, S. K., Cho, J. P. and Moon, Y. I. (2014). "Non-Parametric low-flow frequency analysis using RCPs scenarios data: A Case Study of the Gwangdong Storage Reservoir, Korea." Journal Korean Soci. Civil Engineers, Vol. 34, No. 4, pp. 1125-1138 (in Korean). https://doi.org/10.12652/Ksce.2014.34.4.1125
  36. Yoon, S. K., Kim, J. S. and Kwon, H. H. (2013a). "Different impacts of the two phases of El Nino on variability of warm season rainfall and frequency of extreme events over the han river basin." Journal Korea Water Resour. Assoc., Vol. 46, No. 2, pp. 123-137 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.123
  37. Yoon, S. K., Kim, J. S., Lee, J. H. and Moon, Y. I. (2013b). "Hydrometeorological variability in the Korean Han River Basin and its sub-watersheds during different El Nino phases." Stoch. Environ. Res. Risk Assess., 27, pp. 1465-1477. https://doi.org/10.1007/s00477-012-0683-9