• Title/Summary/Keyword: Changes of state of water

Search Result 366, Processing Time 0.036 seconds

Histopathological Study of Acute Toxicity of Ammonia on Common Carp Cyprinus carpio (잉어, Cyprinus carpio에 미치는 암모니아 급성독성의 조직병리학적 연구)

  • YANG Han Choon;CHUN Seh-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 1986
  • The carp (Cyprinus carpio) used in the experiment were hatched in the spring this year and reared to 5.96g($4.84{\sim}6.55g$) in mean weight in a nursery pond at Daeyon fish farm, Pusan, Korea. The sample fish were exposed to different conditions of total ammonia (TA-N) concentrations 10, 20 and 30ppm and pH 6.5, 7.0, 7.5 and 8.0 at water temperatures 20, 25 and $30^{\circ}C$ for 24, 48 and 72 hours. After the procedure, the gill, liver and kidney of the fish were examined histopathologically. In this experiment, with the rise of water temperature, increase of pH and ammonia concentration, and the extension of exposure time the three organs showed the tendency of apparent abnormal changes such as hypertrophy and necrosis in their tissues. At $20^{\circ}C$ of water temperature gill tissue did not show any abnormality regardless of the change of pH at 10 ppm of ammonia concentration for 24 hours of exposure, but beyond the conditions given above, there occurred hypertrophy and the epithelium of gill lamellae was detached. The detach of gill lamellae epithelium initiated from the proximal part of the gill lamellae then gradually spread toward the uppermost tip. The heavier vacuolation of the liver was observed with the rise of water temperature and pH, and such morbid state in the liver was considered to be the result of edema in the liver tissue. The kidney showed no damage to the renal tubule epithelium at pH 6.5, but it was damaged at pH 8.0 when exposed to 30 ppm ammonia at $20^{\circ}C$ for 24 hours.

  • PDF

A STUDY ON THE SANITARY QUALITY OF PACIFIC OYSTERS, CRASSOSTREA GIGAS AND GROWING WATERS IN BURLEY LAGOON, WASHINGTON (미국 Washington주 Burley Lagoon에 있어서의 참굴, Crassostrea gigas과 그 서식수역에 대한 위생학적 연구)

  • KIM Seonh Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.41-51
    • /
    • 1974
  • A study of the sanitary quality of Pacific oysters (Crassostrea gigas) and growing waters associated with raft culture in Burley Lagoon, Washington was conducted. The study was sponsored by the Agency for International Development of the U.S. Department of State. The results obtained in this study are as follows: The average values of temperature, salinity and turbidity in the water showed that the values of bottom sample were slightly higher than top samples. The difference was about $0.3^{\circ}C$ for temperature, $0.5\%_{\circ}$ for salinity and 0.1 JTU for turbidity. The changes of temperature and salinity by tide generally followed the tide cycle pattern. Sanitary indicator microorganism concentrations in top water were generally higher than those in bottom water. In general, the levels of mean coliform and fecal coliform MPN's varied inversely with tide level indicating that the sources of these groups of microorganisms are the fresh water streams flowing into the estuary. The $35^{\circ}C$ plate counts were more stable at different tide levels. Mean values of coliform and fecal coliform MPN's in oysters demonstrated that levels in top oysters were generally higher than those in bottom oysters. However, mean values of $35^{\circ}C$ Plate count in oysters did not show this pattern. The mean levels of both coliform and fecal coliform MPN's in oysters also correlated inversely with tidal level. The accumulation ratios of oysters obtained during the study period ranged from 8.6 to 19.7 for mean coliform MPN and 16.9 to 44.3 for fecal coliform MPN. According to the results obtained from present study, one suggestion could be of considerable importance for the sanitary operation in hanging culture of pacific oysters. The results indicate that harvest of the oysters at high tide would result in lower levels of indicator organisms in the shellfish.

  • PDF

Seasonal color change of the oxyhydrous precipitates in the Taebaek coal mine drainage, south Korea, and implications for mineralogical and geochemical controls

  • Kim, J. J.;C. O. Choo;Kim, S. J.;K. Tazaki
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.38-39
    • /
    • 2001
  • The seasonal changes in pH, Fe, Al and SO$_4$$\^$2-/ contents of acid drainage released from coal mine dumps play a major role in precipitation of metal hydroxides in the Taebaek coal field area, southeastern Korea. Precipitates in the creeks underwent a cycle of the color change showing white, reddish brown and brownish yellow, which depends on geochemical factors of the creek waters. White precipitates consist of Al-sulfate (basaluminite and hydrobasaluminite) and reddish brown ones are composed of ferrihydrite and brownish yellow ones are of schwertmannite. Goethite coprecipitates with ferrihydrite and schwertmannite. Ferrihydrite formed at higher values than pH 5.3 and schwertmannite precipitated below pH 4.3, and goethite formed at the intermediate pH range between the two minerals. With the pH being increased from acid to intermediate regions, Fe is present both as schwertmannite and goethite. From the present observation, the most favorable pH that basauluminte can precipitate is in the range of pH 4.45-5.95. SEM examination of precipitates at stream bottom shows that they basically consist of agglomerates of spheroid and rod-shape bacteria. Bacteria species are remarkably different among bottom precipitates and, to a less extent, there are slightly different chemical compositions even within the same bacteria. The speciation and calculation of the mineral saturation index were made using MINTEQA2. In waters associated with yellowish brown precipitates mainly composed of schwertmannite, So$_4$ species is mostly free So$_4$$\^$2-/ ion with less AlSo$_4$$\^$+/, CaSo$\sub$(aq)/, and MgSo$\sub$4(aq)/. Ferrous iron is present mostly as free Fe$\^$2+/, and FeSo$\sub$4(aq)/ and ferric iron exists predominantly as Fe(OH)$_2$$\^$+/, with less FeSo$\sub$4(aq)/, Fe(OH)$_2$$\^$-/, FeSo$_4$$\^$-/ and Fe$\^$3+/, respectively Al exists as free Al$\^$3+/, AlOH$_2$$\^$-/, (AlSo$_4$)$\^$+/, and Al(So$_4$)$\^$2-/. Fe is generally saturated with respect to hematite, magnetite, and goethite, with nearly saturation with lepidocrocite. Aluminum and sulfate are supersaturated with respect to predominant alunite and less jubanite, and they approach a saturation state with respect to diaspore, gibbsite, boehmite and gypsum. In the case of waters associated with whitish precipitates mainly composed of basaluminite, Al is present as predominant Al$\^$3+/ and Al(SO$_4$)$\^$+/, with less Al(OH)$\^$2+/, Al(OH)$_2$$\^$+/ and Al(SO$_4$)$\^$2-/. According to calculation for the mineral saturation, aluminum and sulfate are greatly supersaturated with respect to basaluminite and alunite. Diaspore is flirty well supersaturated while jubanite, gibbsite, and boehmite are already supersaturated, and gypsum approaches its saturation state. The observation that the only mineral phase we can easily detect in the whitish precipitate is basaluminite suggests that growth rate of alunite is much slower than that of basaluminite. Neutralization of acid mine drainage due to the dilution caused by the dilution effect due to mixing of unpolluted waters prevails over the buffering effect by the dissolution of carbonate or aluminosilicates. The main factors to affect color change are variations in aqueous geochemistry, which are controlled by dilution effect due to rainfall, water mixng from adjacent creeks, and the extent to which water-rock interaction takes place with seasons. pH, Fe, Al and SO$_4$ contents of the creek water are the most important factors leading to color changes in the precipitates. A geochemical cycle showing color variations in the precipitates provides the potential control on acid mine drainage and can be applied as a reclamation tool in a temperate region with four seasons.

  • PDF

Changes of Physico-chemical Properties of paper Mill Sludge amended with Pig Manure in Composting Process (제지슬러지와 돈분을 이용한 퇴비화 과정중 이화학적 특성 변화)

  • Min, Kyoung-Hoon;Chang, Ki-Woon;Yu, Young-suk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.86-92
    • /
    • 2000
  • This study was conducted to determine the optimal mixing ratio of the paper mill sludge(PMS) and pig manure(PM). Since the former contains lots of total carbon and low nitrogen, it was used as carbon source. Also, dried paper mill sludge(DPMS) was added to the mixture to control the water content. The treatments was composed of four as follows, PMS-100(PM 0%+PMS 80%+DPMS 20%), PMS-85(15+65+20), PMS-70(30+50+20), and PMS-55(45+35+20). The mixtures were composted under aerobic condition in $1.25m^3$ static piles. The piles were aerated for 15 minutes per day and turned over the mixture once a week at the early stage of composting. To estimate the maturity of composts, the changes of physico-chemical properties such as temperature, pH, C/N ratio and color were monitored every week. The 25-30 and 55-60% as optimal condition of C/N ratio and moisture content were respectively recommended for effective composting by the evaluation of the changes of phsico-chemical properties for materials taken from compost files during the composting period. When the 30 and 45% of PM were mixed with PMS, the maturity time at least demanded to the stable state were shortened and the qualify of the final product was improved in a view of nutritional components.

  • PDF

A Preliminary X-ray Photoelectron Spectroscopic Study on the Manganese Oxidation State of in Polymetallic Nodules of the East Siberian Sea (동시베리아해 망가니즈 단괴의 망가니즈 산화상태 변화 규명을 위한 X선 광전자 분광분석 예비연구)

  • Hyo-Im Kim;Sangmi Lee;Hyo-Jin Koo;Yoon Ji;Hyen-Goo Cho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.303-312
    • /
    • 2023
  • The determination of the oxidation states of metal elements in manganese nodules sheds light on the understanding of the formation mechanism of nodules, providing insights into the paleo-environmental conditions such as the redox potential of the aqueous system. This study aims to reveal the oxidation states and chemical bonding of manganese in the natural polymetallic nodules, utilizing conventional X-ray photoelectron spectroscopy (XPS). Specifically, shallow manganese nodules from the Siberian Arctic Sea, effectively recording mineralogical variations, were used in this study. Detailed analysis of XPS Mn 2p spectra showed changes in the manganese oxidation state from the center to the outer parts of the nodules. The central part of the nodules showed a higher Mn4+ content, approximately 67.9%, while the outermost part showed about 63% of Mn4+ due to an increase in the Mn3++Mn2+. The decrease in the Mn oxidation state with the growth is consistent with the previously reported mineralogical variations from todorokite to birnessite with growth. Additionally, the O 1s spectra presented a predominance of Mn-O-H bonds in the outer layers compared to the center, suggesting hydration by water in the layered manganates of outer layers. The results of this study demonstrate that XPS can be directly applied to understand changes in paleo-environmental conditions such as the redox states during the growth of manganese nodules. Finally, future studies using high-resolution synchrotron-based XPS experiments could achieve details in oxidation states of manganese and trace metal elements.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Effects of oropharyngeal taste stimuli in the restoration of the fasting-induced activation of the HPA axis in rats (백서에서 금식으로 인한 스트레스 대응축 활성화의 회복조절기전에서 구강인두로부터 입수되는 다양한 맛 자극의 효과)

  • Yoo, Sang-Bae;Lee, Jong-Ho;Ryu, Vitaly;Jahng, Jeong-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • Introduction: This study examined the regulatory mechanism underlying the meal-induced changes in the hypothalamic-pituitary-adrenal gland (HPA) axis activity. Materials and Methods: Male Sprague-Dawley rats (250-300 g) were hired for two different experiments as follows; 1) rats received either 8% sucrose or 0.2% saccharin ad libitum after 48 h of food deprivation with the gastric fistula closed (real feeding) or opened (sham feeding). 2). rats received 5 ml of intra-oral infusion with 0.2% saccharin or distilled water after 48 h of food deprivation. One hour after food access, all rats were sacrificed by a transcardiac perfusion with 4% paraformaldehyde. The brains were processed for c-Fos immunohistochemistry and the cardiac blood was collected for the plasma corticosterone assay. Results: Real feedings with sucrose or saccharin and sham feeding saccharin but not sucrose, following food deprivation decreased the plasma corticosterone level. c-Fos expression in the nucleus tractus of solitarius (NTS) of the fasted rats was increased by the consumption of sucrose but not saccharin, regardless of the feeding method. On the other hand, the consumption of sucrose or saccharin with real feeding but not the sham, induced c-Fos expression in the paraventricular nucleus (PVN) of the fasted rats. The intra-oral infusion with saccharin or water decreased the plasma corticosterone level of the fasted rats. Intra-oral water infusion increased c-Fos expression in both the PVN and NTS, but saccharin only in the NTS in the fasted rats. Conclusion: Neither restoration of the fasting-induced elevation of plasma corticosterone nor the activation of neurons in the PVN and NTS after refeeding requires the palatability of food or the post-ingestive satiety and caloric load. In addition, neuronal activation in the hypothalamic PVN may not be an implication in the restoration of the fasting-induced elevation of the plasma corticosterone by oropharyngeal stimuli of palatable food.

State of Optimal Rearing Technique on the Abalone (Haliotis discus hannai) Juvenile (참전복 치패의 최적사육 기술현황)

  • Son, Maeng-Hyun;Lee, Jung-Uie;Park, Min-Woo;Lim, Han-Kyu;Kim, Dae-Jung;Hwang, Hyung-Gue
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.621-627
    • /
    • 2009
  • In order to standardize the juvenile abalone rearing technique, we selected sample farms by region in East, West and South coasts of Korea and Jeju island. We also have reviewed previous literature and visited farms to survey on the management of abalone juvenile production, spawning, hatching and so forth. Results of investigation are as follows: The light colors of tanks for larvae breeding are good for a frequent examination of larvae behaviour changes during the breeding period. The tank for the abalone juvenile production is a rectangular form in general and its size should amount to 3.5 m in length and 1.2 m width. It also should be built with proper drainage. The best age and size of adult for juvenile production are 3-6 years old individuals, with 9-12 cm separate burial and 125-150 g average weight. To induce spawning, the use of the exposure on air and ultraviolet ray together was the most effective. The density of larvae by plate should be 150-300 individuals and the proper stocking density was est imated and amount to 10-30 individuals. It has been shown that a correlation between water surface size($X_1$) and number of plates ($Y_1$), when producing abalone juveniles, is quite high and it is described by equation $Y_1=138.88X_1-5,736.8\;(R^2=0.9028)$. In addition, it has also been shown that a correlation between production of abalone juveniles ($Y_2$) and number of plates ($X_2$) is high and it is described by equation $Y_2=4.554X_2+12,493\;(R^2=0.8818)$. In Jindo region where a mass production of juveniles abalone has been done, it was shown, that a correlation between rearing water surface size ($X_3$) and production of juveniles abalone ($Y_3$) is very high and this relationship was described by the equation $Y_3=747.03X_2+94,359(R^2=0.9809)$. It has also been shown that a correlation between water surface size ($X_4$) and production of abalone juveniles ($Y_4$) in nationwide is high and the relationship between this variables was described by equation $Y_4=635.85X_4+99,923\;(R^2=0.9020)$.

The Possibility of Environmental Paraquat Exposure (파라콰트의 환경성 노출 가능성)

  • Oh, Se-Hyun;Choi, Hong-Soon;You, Ho-Young;Park, Jun-Ho;Song, Jae-Seok
    • Journal of agricultural medicine and community health
    • /
    • v.36 no.4
    • /
    • pp.218-226
    • /
    • 2011
  • Objectives: Paraquat (PQ) is a widely used ionic pesticide that is fatal when ingested accidentally or for suicidal purposes. It is thought that chronic exposure of PQ is related with the development of Parkinson's disease, but epidemiological studies have not yet confirmed that theory. This study attempted to estimate the possibility of environmental PQ exposure through soil and water. Materials and Methods: We analyzed the amount of decomposed PQ solution in wet soil after exposure to ultraviolet light. An artificial rainfall condition was simulated over soil sprayed with PQ to measure the amount of eluted PQ. In addition, PQ was diluted in water from three differently rated rivers and the changes in PQ concentration were measured after ultraviolet exposure over one month. High performance liquid chromatography/ultra violet detection was used to analyze the concentrations of PQ. Results: In the method we used, the recovery rate of PQ showed a precision rate less than 5%, an accuracy greater than 88%, and the calibration equation was y=5538.8x-440.01($R^2$=0.9985). There were no significant differences in the concentrations of PQ obtained from the three specimens over a 1-week period. From the PQ-sprayed soil, the artificial rainfall conditions showed no PQ elution over a 1-month period, and there was no significant differences in PQ concentrations according to ultraviolet exposure among the three samples. Conclusions: PQ remains well adsorbed naturally in soil. However, it may still exist in an integrated state for a long time in the hydrosphere, so the possibility of PQ exposure through drinking water cannot be disqualified.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.