• Title/Summary/Keyword: Changes of seawater

Search Result 280, Processing Time 0.027 seconds

Effects of Permeability Change of Soil-Bentonite Mixture due to Seawater on Seawater Intrusion (해수로 인한 흙-벤토나이트 혼합물의 투수계수 변화가 해수유입에 미치는 영향)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2001
  • Soil-bentonite mixture is often used for barrier wall to prevent seawater intrusion. In this study, the effect of seawater on the permeability of soil-bentonite mixture is examined, and the effect of permeability change on the seawater intrusion is investigated. Seawater intrusion in coastal areas was modeled using a finite element method. Seawater intrusion in the seawater-contaminated zone was determined by considering the hydraulic conductivity changes using the residual flow procedure (RFP) in the simulation model. Steady state and unsteady state conditions with variations in ground water levels in an inland area were investigated. The interface between fresh water and seawater, found by the proposed method, was located lower at the seawater side and the level at the fresh water side is higher than those by conventional methods.

  • PDF

Ultrastructural Change of Osmoregulatory Cells during Seawater Adaptation in Rainbow Trout (Oncorhynchus mykiss) (무지개송어의 해수순치과정에 일어나는 삼투조절세포의 미세구조)

  • Yoon, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • There were observed the histomorphological alterations such as chloride cell hyperplasia, branchial lamellar epithelial separation, the increased cellular turnover of chloride cells, glomerular shrinkage and blood congestion in rainbow trout (Oncorhynchus mykiss) during the seawater adaptation. The ultrastructure by scanning electron microscope (SEM) indicated that the gill secondary lamella of rainbow trout exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. There were observed a large number of mitochondria with the elongate and well-developed cristae in chloride cells exposed to seawater by transmission electron microscope (TEM). The presence of two mitochondria- rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Glomerulus shrinkage and blood congestion were occurred higher in nephrons of seawater-adapted fish than those living in freshwater. Our findings demonstrated that rainbow trout tolerated moderately saline environment and the increased body weight living in seawater was relatively higher than that living in freshwater in spite of histopathological changes.

  • PDF

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

Ultrastructural Changes of the Epidermis of Guppy(Poecilia reticulatus) Scale Adapted to the Seawater (해수에 적응된 guppy(Poecilia reticulatus) 상피의 미세구조적 변화)

  • Moon, Young-Wha
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.104-114
    • /
    • 1995
  • The epidermis of scales in the abdominal parts from freshwater- and seawater-adapted guppies(Poecilia reticulatus) were studied respectively by scanning- and transmission- electronmicroscope. In the seawater adapted group, the surface area of pavement cells is increased nearly twice as much as that of freshwater-adapted group, and the pavement cells are relatively flattened. Adaptatoin to seawater causes the increment of the density of glycocalyx in the surface of the microridge of pavement cells, as well as the well developed intercellular junctional complex(desmosome) between neighbouring filament-containing cells. Also, intercellular space between adjacent filament-containing cells is more frequently observed in the epidermis of seawater adapted guppy.

  • PDF

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.223-232
    • /
    • 2008
  • In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

Effects of various foulants on flux changes in membrane distillation process (막증류 공정에서 오염 인자가 플럭스 변화에 미치는 영향)

  • Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • The effects of dissolved inorganic and organic matter in seawater and the characteristics of fouling on the membrane surface were investigated within membrane distillation (MD) process. The changes of the membrane flux of PE and PVDF hollow fiber membranes under natural and synthetic seawater were compared with given variances of temperature. The flux of both membranes under the synthetic seawater, without any organic matter, were higher than that of the natural seawater, indicating the organic fouling on the membrane surface. The surface of the membrane was analyzed using scanning electron microscope (SEM) to examine the fouling. The experiment with organics has shown the formation of thin film over the membrane surface, while the experiment with inorganics has shown only the formation of inorganic crystals. The results indicated the organic matter as the major foulants and that the organics affected the formation of the crystals. Permeate water conductivity of all conditions verified the quality of the water to be better if not similar to that of RO.

Accelerated Laboratory Experiments Investigating Weathering of Volcanic Rocks from Yuchon Group Exposed to Seawater and Acidified Distilled Water (실내인공풍화가속실험을 통한 해수와 산성증류수에 대한 유천층군 화산암의 풍화 특성 연구)

  • Ik Woo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • Laboratory tests of accelerated artificial weathering compared the effects of seawater and acidified distilled water on rock weathering. The experiments simulated chemical and physical weathering of five different types of volcanic rock by applying 45 freeze-thaw cycles using seawater and acidified distilled water (pH 3), both at 70℃. The physical properties and uniaxial compressive strength (UCS) of the rocks were measured after 15 and 45 cycles of artificial weathering. Most of degradation of physical properties appeared within the first 15 cycles, and acidified distilled water had a greater effect than seawater. Analysis of variance (ANOVA) statistically evaluated the differences in UCS of the different rock types during the tests. The rate of UCS reduction after 45 cycles was similar across the samples, being independent of the rock type and the trend of changes in physical properties. In contrast to the changes in the physical properties, the UCS was more affected by seawater than by acidified distilled water.

Ultrastructural and Histochemical Changes of Mucous Cells in the Gill Epithelium of the Seawater-Adapted Guppy (Poecilia reticulatus) (해수에 적용된 Guppy (Poecilia reticulatus) 아가미 점액세포의 미세구조)

  • 문영화
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.570-579
    • /
    • 1995
  • Ultrastructural and histochemical changes of mucous cells In the freshwater and seawater-adapted guppy (Poecflia reticulatus) gills were observed by the light, scanning-and transmisslon~lectron microscopes. The mucous cells were usually located in the epithelium of primary lameilne projected from the gill arch. The rough endoplasmic retIculum and Golgi complex were hIghly developed In immature mucous cells. The mature mucous cells were nearly filled with the mucous granules. In the freshwater guppy, the histochemical properties of the mucous cells were a mixture of the neutral mucin, sialomucin and sulfomucin. When guppy was adapted to the seawater, the content of acid glycoproteins (slalomucln and sulfomucin) was decreased. In addition, the number of mucous cells in the seawater-adapted group was less than a third of those in the freshwater one. These results suggest that the seawater-adapted guppy would react to the changed osmotic stress of the seawater. And also, the environmental change by the increased salt concentraion might lead to reduce the chance of infections.

  • PDF

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.