• 제목/요약/키워드: Challenge of Application

검색결과 410건 처리시간 0.029초

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

해체주의 건축 디자인에서 설치미술과의 상관성에 관한 연구 (A Study on the Relationship to Installation Art in Deconstruction Architecture Design)

  • 김명옥
    • 한국실내디자인학회논문집
    • /
    • 제12호
    • /
    • pp.10-17
    • /
    • 1997
  • The lastest art is being characterised by an ever active exchange between different genre. This is a study on the installation aspect in deconstruction architectured and interior design. The progressive and aggressive nature of installatation art embodies uncatagorized genre, the freedom of material application, introduction of the notion of time in space, the reversion of subject and object, the union of art and every experience, understanding of object through deconstruction, enlargement of concept of space, collage-style composition and layer technique. I can conclude that the installation aspect in Tshumi's Parc de la Villette is its call upon the audience to actively participate, the introduction of a coincidental conjunction, its challenge on the conventional idea of park and its flexibility caused by human activity and time. In Hadid's Hong Kong Peak Club the installation aspect is the application of layer technique using four enormous beams horizontally laid out on a man-made moutain. Furthermore, Libeskind's pursuit of the mental in Berlin Museum Extension through the penetration of an invisible line into a void creates a new interpretation of the role of a museum and thus relates itself to installation art. The installation aspect in Himmelblau's Vienna Roof Renovation is the literal deconstruction of the roof of an old building in the old section of Wien and the expression of time and space through the interrelationship between interior and exterior environment by the use of juxtaposition technique. Finally, I note that the installation aspect in Gehry's Santa Monica Residence is the reorganization of cheap material as a form of 'object', that creates spon-taneity, movement as well as flow of time in space and ex-hibit the double-sidedness of the visible world.

  • PDF

Biometric identification of Black Bengal goat: unique iris pattern matching system vs deep learning approach

  • Menalsh Laishram;Satyendra Nath Mandal;Avijit Haldar;Shubhajyoti Das;Santanu Bera;Rajarshi Samanta
    • Animal Bioscience
    • /
    • 제36권6호
    • /
    • pp.980-989
    • /
    • 2023
  • Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.

간호학생의 질 향상과 안전교육(QSEN) 역량개발을 위한 영화간호교육의 적용 (QSEN Competencies in Pre-licensure Nursing Education and the Application to Cinenurducation)

  • 오진아;신혜원
    • 한국간호교육학회지
    • /
    • 제18권3호
    • /
    • pp.474-485
    • /
    • 2012
  • Purpose: The Quality and Safety Education for Nurses [QSEN] initiative group has identified six competencies (patient-centered care, teamwork and collaboration, evidence-based practice, quality improvement, safety, and informatics) for pre-licensure nursing education along with related knowledge, skills, and attitudes for each competency. The purpose of this article is to illustrate a teaching strategy that uses films to demonstrate the QSEN competencies in undergraduate nursing students. Method: A literature review was conducted to define QSEN competencies, and six feature-length commercial movies were selected through a systematic process. We provided film titles and their synopses that can be useful in teaching the QSEN six competencies to undergraduate nursing students. Results: Patch Adams for patient-centered care, Wit for teamwork and collaboration, Lorenzo's Oil for evidence-based practice, Am$\acute{e}$lie for quality improvement, Blindness and The Island for informatics can be applied in nursing classroom practices. Conclusion: Establishing the connection between QSEN competencies and cinenurducation is novel, yet it would provide a unique opportunity for nurse educators seeking to overcome the challenge of better preparing future nurses. In future studies, additional films should be considered to enhance nursing educational strategies.

Recent advances in pediatric interventional cardiology

  • Kim, Seong-Ho
    • Clinical and Experimental Pediatrics
    • /
    • 제60권8호
    • /
    • pp.237-244
    • /
    • 2017
  • During the last 10 years, there have been major technological achievements in pediatric interventional cardiology. In addition, there have been several advances in cardiac imaging, especially in 3-dimensional imaging of echocardiography, computed tomography, magnetic resonance imaging, and cineangiography. Therefore, more types of congenital heart diseases can be treated in the cardiac catheter laboratory today than ever before. Furthermore, lesions previously considered resistant to interventional therapies can now be managed with high success rates. The hybrid approach has enabled the overcoming of limitations inherent to percutaneous access, expanding the application of endovascular therapies as adjunct to surgical interventions to improve patient outcomes and minimize invasiveness. Percutaneous pulmonary valve implantation has become a successful alternative therapy. However, most of the current recommendations about pediatric cardiac interventions (including class I recommendations) refer to off-label use of devices, because it is difficult to study the safety and efficacy of catheterization and transcatheter therapy in pediatric cardiac patients. This difficulty arises from the challenge of identifying a control population and the relatively small number of pediatric patients with congenital heart disease. Nevertheless, the pediatric interventional cardiology community has continued to develop less invasive solutions for congenital heart defects to minimize the need for open heart surgery and optimize overall outcomes. In this review, various interventional procedures in patients with congenital heart disease are explored.

실제 환경에 최적화된 MIFARE Classic 공격 절차 (Optimal MIFARE Classic Attack Flow on Actual Environment)

  • 안현진;이예림;이수진;한동국
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2240-2250
    • /
    • 2016
  • MIFARE Classic is the most popular contactless smart card, which is primarily used in the management of access control and public transport payment systems. It has several security features such as the proprietary stream cipher Crypto 1, a challenge-response mutual authentication protocol, and a random number generator. Unfortunately, multiple studies have reported structural flaws in its security features. Furthermore, various attack methods that target genuine MIFARE Classic cards or readers have been proposed to crack the card. From a practical perspective, these attacks can be partitioned according to the attacker's ability. However, this measure is insufficient to determine the optimal attack flow due to the refined random number generator. Most card-only attack methods assume a predicted or fixed random number, whereas several commercial cards use unpredictable and unfixable random numbers. In this paper, we propose optimal MIFARE Classic attack procedures with regards to the type of random number generator, as well as an adversary's ability. In addition, we show actual attack results from our portable experimental setup, which is comprised of a commercially developed attack device, a smartphone, and our own application retrieving secret data and sector key.

General picture of co-nonsolvency for linear and ring polymers

  • Park, Gyehyun;Lee, Eunsang;Jung, YounJoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.147-154
    • /
    • 2016
  • Co-nonsolvency is a puzzling phenomenon that a polymer swells in a good solvent individually, but it collapses in a mixture of good solvents. This structural transition with changing solvent environment has been drawing attention due to practical application for stimuli-responsive polymer. The aim of this work is to describe the physical origin of the co-nonsolvency. In this work, we present Monte Carlo simulations for polymer solutions by using simple and general model. We simulate linear and ring polymers to compare their co-nonsolvency behaviors. Calculating Flory exponents and bridging fractions gives a good description for polymer structures. While the polymer structure shows non-monotonous behavior with increasing the cosolvent fraction, the chemical potential decreases monotonously. This indicates that coil-to-globule transition of polymers is purely controlled by free energy and can be regarded as a thermodynamics transition. We also present that ring polymers have higher looping probability than linear polymers, thus the bridging fraction remains higher at high cosolvent fraction. Our study provides a new perspective to understand polymer structure when the polymer "dissolves well" in any solvent.

  • PDF

On the Application of Channel Characteristic-Based Physical Layer Authentication in Industrial Wireless Networks

  • Wang, Qiuhua;Kang, Mingyang;Yuan, Lifeng;Wang, Yunlu;Miao, Gongxun;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2255-2281
    • /
    • 2021
  • Channel characteristic-based physical layer authentication is one potential identity authentication scheme in wireless communication, such as used in a fog computing environment. While existing channel characteristic-based physical layer authentication schemes may be efficient when deployed in the conventional wireless network environment, they may be less efficient and practical for the industrial wireless communication environment due to the varying requirements. We observe that this is a topic that is understudied, and therefore in this paper, we review the constructions and performance of several commonly used test statistics and analyze their performance in typical industrial wireless networks using simulation experiments. The findings from the simulations show a number of limitations in existing channel characteristic-based physical layer authentication schemes. Therefore, we believe that it is a good idea to combine machine learning and multiple test statistics for identity authentication in future industrial wireless network deployment. Four machine learning methods prove that the scheme significantly improves the authentication accuracy and solves the challenge of choosing a threshold.

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.