• Title/Summary/Keyword: Ceramic-glass

Search Result 1,315, Processing Time 0.029 seconds

Measurement of Glass Sintering Degree by Electro-chemical Method (전기 화학적 방법을 이용한 소결도의 측정)

  • 차재민;김웅식;이병철;류봉기
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.553-559
    • /
    • 2003
  • PDP rib is one of the important parts of manufacturing process and the sintering degree of rib plays an important role to prevent some problems such as cross talk. Nowadays, the screen-printing method, which is a low price and high production, is used to make a rib. However, it is hard to judge and value the sintering ratio of sintered body itself. In this study, we measured the sintering degree by the dielectric breakdown of pores with the potentiostat. We conformed that this has similar tendency to density of sintered samples and an error being expected by open and closed pores was inspected by change of the microstructure to scanning electron microscope. This result showed that the sintering degree of PDP rib could be analyzed into the electro-chemical method.

Preparation and Structural Analysis of Cao-SiO2 Gel by Sol-Gel Method (졸 겔 법을 이용한 Cao-SiO2계 겔의 합성 및 구조분석)

  • Lee, Tae-Hyung;Lee, Su-Jeong;Hwang, Yeon;Kim, Ill-Young;Ohtsuki, Chikara;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.644-650
    • /
    • 2008
  • It has been proposed that the Cao-$SiO_2$ binary system can be good basic composition of bioactive glasses and glass-ceramics. In the present study, various kinds of Cao-$SiO_2$ gels were prepared by sol-gel method in order to control the microstructure which are related to their dissolution rate, induction period of apatite formation in body environment. Characterization of the gels were done by wet chemical analysis, SEM observation, FT-IR spectroscopy and XRD. The gelation time decreased with CaO content. However, the volume of all the dried gel decreased to 50% of the wet gels irrespective of increasement of CaO content. All the Cao-$SiO_2$ gels were amorphous and contained a large amount of silanol groups on their surfaces after heat treatment up to $800^{\circ}C$. The interconnected structure of the gel changed to agglomerated spherical powders when Ca content exceed to 20 mol%. Most of the Cao-$SiO_2$ gel showed amorphous when heat-treated up to $900^{\circ}C$. However, quartz and cristobalite was produced when heat-treated at $1000^{\circ}C$ and resultant microstructure of the gel contained microporous structure.

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

Upconversion Mechanisms in $Tm^{3+}$-doped Glasses under 800 nm Excitation (800nm 파장 여기관에 의한 $Tm^{3+}$첨가 유리내 상향 전이 현상 기구)

  • Jeong, Hoon;Chung, Woon-Jin;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • 700nm red emission(3F3longrightarrow3H6) in Tm3+ ion with 800 nm(3H6longrightarrow3H4) excitation via upconversion process has been reported only in host materials which have low phonon energies such as halide crystals. However, we observed 700nm and 480nm(1G4longrightarrow3H6) upconverted emission with 800nm excitation in several oxide glasses which has never reported. With spectroscopic analyses and lifetime measurements of each nergy level of Tm3+ ion doped in various oxide glasses, following mechanisms are suggested. For red upconversion, upconversion mechanism changed with Tm3+ concentration. While direct excitation up to 3F3 level via anti-Stokes excitation was dominated at low concentration, two-step excitation via 3H6longrightarrow3H4 and 3F4longrightarrow3F3 transitions was dominated at high concentration. For blue upconversion, two step excitation mechanism up to 1G4 level was suggested as follows : electrons are exciated up to 3H5 with direct excitation with pumping light up to 3H4 followed by multiphonon relaxation, and then additional reabsorption of pumping light excites electrons up to 1G4.

  • PDF

Characteristics Analysis and Manufacture of Ta2O5 Thin Films Prepared by Dual Ion-beam Sputtering Deposition with Change of Ar/O2Gas Flow Rate of Assist Ion Beam (이중 이온빔 스퍼터링 방식을 사용한 보조 이온빔의 Ar/O2가스 유량에 따른 Ta2O5 박막의 제조 및 특성분석)

  • 윤석규;김회경;김근영;김명진;이형만;이상현;황보창권;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1165-1169
    • /
    • 2003
  • The Ta$_2$O$_{5}$ thin film was deposited on Si-(III) and glass substrate with the change of Ar:O$_2$ gas flow rate in the assist ion gun by the Dual ion-Beam Sputtering (DIBS). As the $O_2$ gas flow of the assist ion gun was decreased, the deposition rate of the thin films decreased. The refractive index was fixed (2.11, at 1550 nm) without regarding to $O_2$ gas flow of the range 3∼12 sccm in assist ion gun. The condition of Ar:O$_2$=3:12 was formatted stoichiometry composition of Ta$_2$O$_{5}$ and the ms roughness was small (0.183 nm).

Properties of Nano-sized Au Particle Doped ZrO2 Thin Film Prepared by the Sol-gel Method (졸-겔법에 의한 나노 사이즈 Au 미립자 분산 ZrO2 박막의 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1197-1201
    • /
    • 2003
  • Thin film on SiO$_2$ glass was synthesized by a dip-coating method from the ZrO$_2$ sol which had dispersed nanosize Au particle under ambient atmosphere. After heat treatment of the prepared thin film, the characteristics were investigated by X-ray diffraction, UV-VIS spectrometer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that ZrO$_2$ thin film with 100 nm thickness was crystallized to tetragonal phase at 50$0^{\circ}C$. The size of dispersed Au particle was 15∼40nm and the film had a smooth surface with a roughness of 0.84 nm. The film showed nonlinearity characteristics with absorption peaks at 630∼670nm visible region because of the plasma resonance of Au metallic particles.

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.