• Title/Summary/Keyword: Ceramic supporter

Search Result 13, Processing Time 0.026 seconds

A Study on Fabrication of $Al_2O_3-ZrO_2$ Inorganic Membranes (알루미나-지르코니아 세라믹 막 제조에 관한 연구)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1147-1161
    • /
    • 1995
  • When ceramic membrance was made from metal salt solution in place of metal akoxide solution, crack free and good adhesion to supporter was optimized for sol stability and good adhesion force. A starting sol was prepared from aluminum oxychloride aqueous solutjion in order to inhibit the grain growthof Al2O3 during heat treatment. The crack free dip coating can't be achieved in 1mol/ι zirconium oxychloride solution because of the high viscosity which interferes with the hydration copolymerization between Al3+ ion and Zr4+ ion. Thus Al2O3-ZrO2 sol stability and viscosity for dip coating was effective when 0.01 mol/ι zirconium oxychloride was added. The minimizing of crack and achieving better adhesion to the supporter wa obtained by microwave drying, surfactant addition and ultrasonic dip coating in wet atmosphere. The result seems to minimize the capillary force and improve the adhesive ability to supporter during the process. Where the average pore size of Al2O3-ZrO2 ultrafilter ceramic membrane measured 17 Å by the BET method and observed γ-Al2O3 phase with tetragonal zirconia after firing at 700℃.

  • PDF

Formation Mechanism of Low Density Ceramic Supporter with Fly Ash (석탄회를 이용한 저밀도 세라믹 담체의 제조 기구)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul;Jeong, Yong-Dae;Lee, Won-Kwon
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2000
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter system. Wheat powders were used to control the porosity of the supporter and the carbon content of the raw material. Apparent density of 1.6~1.8 g/$\textrm{cm}^3$ was obtained when the fly ash was sintered at $1200^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was formed from the reduced composition of fly ash. This resulted in the closed pore formation which enabled the low apparent density.

  • PDF

Preparation of Low Density Ceramic Supporter from Coal Fly Ash

  • Yeon Hwang;Lee, Hyo-Sook;Lee, Woo-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.605-609
    • /
    • 2001
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter (BAF) system, and the effect of additives and sintering atmosphere on the apparent and bulk density of the carrier was examined. Borax, Na$_2$O and glass powders were added to produce liquid phase. The density of the supporter decreased as the amount of borax increased. The bulk density of 0.79 g/㎤ and the apparent density of 1.10 g/㎤ were obtained when the fly ash with 15% of borax was sintered at 116$0^{\circ}C$ for 15 minutes. The density also decreased as the plate glass powders past through 22${\mu}{\textrm}{m}$ size were mixed. When the fly ash with 12% of grass powder was sintered at 128$0^{\circ}C$ for 10 minutes, the bulk and apparent density were 0.90g/㎤ and 1.00 g/㎤, respectively. Apparent density of 1.6~1.8g/㎤ was obtained when the fly ash was sintered at 120$0^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was farmed from the reduced composition of fly ash. This resulted in the formation of closed pores that enabled the low apparent density.

  • PDF

Preparation of Low Density Ceramic Supporter from Fly Ash with Borax and Glass Powder (붕사 및 유리분말을 첨가한 석탄회로부터 저밀도 세라믹 담체의 제조)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul;Bae, Kwang-Hyun;Jeong, Yong-Dae;Lee, Won-Kwon
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.40-45
    • /
    • 2000
  • Low density ceramic supporter was prepared by using fly ash as a starting mterial with borax or glass powders. Also the wheat powders were used by 30 wt% to increase the initial porosity of the supporter. The density of the supporter decreased as the amount of borax increased. The bulk density of $0.79g/\textrm{cm}^3$ and the apparent density of $1.10g/\textrm{cm}^3$ were obtained when the fly ash with 15% of borax was sintered at $1160^{\circ}C$ for 15 minutes. The density also decreased as the plate glass powders past through $212\mu\textrm{m}$ size were mixed. When the fly ash with 12% of glass powder was sintered at $1280^{\circ}C$ for 10 minutes, the bulk and apparent density were $0.90g/\textrm{cm}^3$ and $1.00g/\textrm{cm}^3$, respectively.

  • PDF

Oxidation Behavior of Nuclear Graphite(IG110) with Surface Roughness (표면조도에 따른 원자로급 흑연(IG110)의 산화거동)

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Lim, Yun-Soo;Chi, Se-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.613-618
    • /
    • 2006
  • Graphite is suitable materials as a moderator, reflector, and supporter of a nuclear reactor because of high tolerance to the high temperature and neutron irradiations. Because graphite is so weak to the oxidation, its oxidation study is essentially demanded for the operation and design of the nuclear reactor. This work focuses on the effect of the surface oxidation of graphite according to the surface treatment. With thermogravimeter (TG), oxidation characteristics of the isotropic graphite are measured at the three temperature areas, and oxidation ratio and amounts are estimated as changing the surface roughness. Furthermore, the polished graphite surface produced fom the surface treatment is investigated with the Raman spectroscopic study. Oxidation behaviors of the surface are also evaluated as elimination the polished layer by washing with strong sonication.

Analysis on the Formation of Dualistic Space and Networks of the Ceramic Industry in Icheon, Korea (이천 도자기 산업의 이원적 공간 형성 및 네트워크 분석)

  • Cheu, Giwan;Lee, Sung-Cheol
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • Since the late 1990s dualistic spatial structure has been configurated in Icheon ceramic industrial space due to the articulation of transmitted ceramics space rooted from imitating the Goryeo and Joseon ceramics and contemporary ceramics space based on academic ceramic arts. Therefore, the main purpose of this paper is to identify the formation of dualistic space in Icheon by investigating the development paths of ceramic industry in historical perspectives and analyzing inter- and extra-firm relations in Icheon. The main results of this research are as follows. Firstly, the development path of transmitted ceramics has declined gradually, while the development path of contemporary ceramics has been embedded in Icheon region. Secondly, the research pointed out that networks of transmitted ceramics and contemporary ceramics are different in the perspectives of inter-firm and extra-firm relations. Thirdly, the government has played a critical role as a financial and administrative supporter and as a network broker between university and Icheon ceramic firms(mainly with transmitted ceramics) for technological cooperation and collaborative R&D.

  • PDF

Energy Harvesting Characteristics of Spring Supported Piezoelectric Cantilever Structure (SPCS) (압전 캔틸레버 스프링 구조물(SPCS)의 에너지 하베스팅 특성)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.766-772
    • /
    • 2012
  • Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Synthesis of complex nanoparticles using bioceramic silica (바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성)

  • Yoon, Seokyoung;Lee, Jung Heon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.