DOI QR코드

DOI QR Code

Energy Harvesting Characteristics of Spring Supported Piezoelectric Cantilever Structure (SPCS)

압전 캔틸레버 스프링 구조물(SPCS)의 에너지 하베스팅 특성

  • Kim, Kyoung-Bum (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Chang-Il (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young-Hun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Young-Jin (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Jeong-Ho (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong-Hoo (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Seong, Tae-Hyeon (Department of Electrical Engineering, Hanyang University)
  • 김경범 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 김창일 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 이영진 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 성태현 (한양대학교 전기공학과)
  • Received : 2012.07.19
  • Accepted : 2012.09.24
  • Published : 2012.10.01

Abstract

Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.

Keywords

References

  1. X. Gao, W. H. Shih, and W. Y. Shih, Appl. Phys. Lett., 97, 233503 (2010). https://doi.org/10.1063/1.3521389
  2. H. Shen, J. Qiu, and M. Balsi, Sensor. Actuat., A169, 178 (2011).
  3. W. G. Li and S. He, IEEE Trans. Ind. Electron., 57, 868 (2010). https://doi.org/10.1109/TIE.2009.2030761
  4. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010). https://doi.org/10.1021/nl100812k
  5. G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R Welsh, IEEE J. Oceanic Eng., 26, 539 (2001). https://doi.org/10.1109/48.972090
  6. H. Lee, P. K. T. Mok, and W. H. Ki, Proceedings of IEEE International Symposium on Circuits and Systems (Geneva, Switzerland, 2000) p. 256.
  7. B. H. Calhoun, D. C. Daly, N. Verma, D. F. Finchelstein, D. D. Wentzloff, A. Wang, S. H. Cho, and A. P. Chandrakasan, IEEE Trans. Comput., 54, 727 (2005). https://doi.org/10.1109/TC.2005.98
  8. M. Goldfarb and L. D. Jones, Trans. ASME, J. Dyn. Syst. Meas. Control, 121, 566 (1999). https://doi.org/10.1115/1.2802517
  9. K. Sato, K. Okamoto, Y. Fuda, and T. Yoshida, Jpn. J. Appl. Phys., 33, 5378 (1994). https://doi.org/10.1143/JJAP.33.5378
  10. M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys., 35, 3267 (1996). https://doi.org/10.1143/JJAP.35.3267
  11. M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys., 36, 3146 (1997). https://doi.org/10.1143/JJAP.36.3146
  12. H. A. Sodano, D. J. Inman, G. Park, Shock Vibr. Dig., 36, 197 (2004). https://doi.org/10.1177/0583102404043275
  13. H. A. Sodano, G. Park, and D. J. Inman, Strain, 40, 49 (2004). https://doi.org/10.1111/j.1475-1305.2004.00120.x
  14. H. Kim, S. Priya, K. Uchino, and R. E. Newnham, J. Electroceram., 15, 27 (2005). https://doi.org/10.1007/s10832-005-0897-z
  15. G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieture, IEEE Trans. Power Electron., 17, 669 (2002). https://doi.org/10.1109/TPEL.2002.802194
  16. R. Islam and S. Priya, Appl. Phys. Lett., 88, 0329 (2006).
  17. L. Mateu and F. Moll, J. Intell. Mater. Syst. Struct., 16, 835 (2005). https://doi.org/10.1177/1045389X05055280
  18. R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). https://doi.org/10.1111/j.1551-2916.2006.01205.x
  19. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  20. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  21. H. C. Song, H. C. Kim, C. Y. Kang, H. J. Kim, S. J. Yoon, and D. Y. Jeong, J. Electroceram., 23, 301 (2009). https://doi.org/10.1007/s10832-008-9439-9

Cited by

  1. Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism vol.16, pp.2, 2014, https://doi.org/10.12812/ksms.2014.16.2.111
  2. A Study on the Characteristic of Energy Harvesting Mechanism for Batteryless Wireless Switch vol.15, pp.5, 2014, https://doi.org/10.5762/KAIS.2014.15.5.3114