• Title/Summary/Keyword: Ceramic powder

Search Result 1,857, Processing Time 0.024 seconds

Formation of Hexagonal Ferrite $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$) Prepared by Coprecipitation-oxidation Method (공침산화법에 의한 육방정 페라이트 $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$)의 생성)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1023-1029
    • /
    • 2001
  • Hexagonal ferrite $Co_2$Z(B $a_3$ $Co_2$F $e_{24}$ $O_{41}$ ) was prepared by various coprecipitation-oxidation methods. The formation of $Co_2$Z was studied in order to determine the optimal method. The $Co_2$Z composition hydroxides were prepared with the different oxidation and precipitation from the aqueous solution of $Ba^{2+}$, $Co^{2+}$ and F $e^{2+}$ chloride mixture. The coprecipitates were heat-treated at various temperatures, and their formation phases and microstructures were investigated from the analyses of DTA/TGA, powder XRD and SEM. The $Co_2$Z phase was observed in the case where the precursor will have the amorphous like oxyhydoxide($\delta$-FeOOH), and formed from $Ba_3$F $e_{32}$ $O_{51}$ , BaF $e_{12}$ $O_{19}$ (M-type) and $Ba_2$ $Co_2$F $e_{12}$ $O_{22}$ (Y-type). The $Co_2$Z was synthesized by the heat-treatment of the coprecipitate, which was prepared from the precipitation after oxidizing the chloride mixed solution, above 110$0^{\circ}C$.EX>.

  • PDF

A study on the growth mechanism of rutile single crystal by skull melting method and conditions of RF generator (스컬용융법에 의한 루틸 단결정 성장메커니즘과 RE generator 조건에 관한 연구)

  • Seok jeong-Won;Choi Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.175-181
    • /
    • 2005
  • Ingots of rutile single crystals were grown by the skull melting method, and their characteristics were compared in terms of melt-dwelling time for each melt. The method is based on direct inductive heating of an electrically conducted melt by an alternating RF field, and the heating is performed by absorption of RF energy. $TiO_2$ is an insulator at room temperature but its electric conductivity increases elevated temperature. Therefore, titanium metal ring(outside diameter : 6cm, inside diameter : 4cm, thickness 0.2cm) was embedded into $TiO_2$, powder (anatase phase, CERAC, 3N) for initial RF induction heating. Important factors of the skull melting method are electric resistivity of materials at their melting point, working frequency of RF generator and cold crucible size. In this study, electric resitivity of $TiO_2$, $(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$ at its melting point was estimated by compairing the electric resitivities of alumina and zirconia. Inner diameter and height of the cold crucible was 11 and 14cm, respectively, which were determined by considering of the Penetration depth $(0.36\~1.13cm)$ and the frequency of RF generator.

Preparation of PMN-PT-BT/Ag Composite and its Mechanical and Dielectric Properties (PMN-PT-BT/Ag 복합체 제조 및 기계적, 유전적 특성)

  • Lim, Kyoung-Ran;Jeong, Soon-Yong;Kim, Chang-Sam;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.846-850
    • /
    • 2002
  • A PMN-PT-BT/Ag composite was prepared by surface modification with MgO sol with hoping to suppress silver's migration during sintering. The mixture of PbO, $N_2O_5,\;TiO_2\;with\;Mg(NO_3)_2$ instead of MgO was ball milled, the solvent was removed and then the dried powders were calcined at 950$^{\circ}C$/1h. The calcined powder were treated with 3.0 mol% $Ag_2O$ and 1.0 wt% MgO sol and calcined at 550$^{\circ}C$/1h. The dielectrics sintered at 1000$^{\circ}C$/4h under a flowing oxygen showed the density of 7.84g/$cm^3$, the room temperature dielectric constant of 18400, the dielectric loss of 2.4%, the specific resistivity of $0.24{\times}10^{12}{\Omega}{\cdot}cm$. It also showed the bending strength of $120.7{\pm}11.26$ MPa and the fracture toughness of $0.87{\pm}0.002\;MPam^{1/2}$ which were comparable to commercial PZT. The microstructure sonsisted of grains of ∼4${\mu}m$. SEM and SIMS analysis showed that Ag grew as ∼1${\mu}m$ and excess MgO as ∼0.5${\mu}m$.

Phase Separation of Gd-doped UO2 and Measurement of Gd Content Dissolved in Uranium Oxide (Gd-doped UO2의 상분리 및 UO2에 고용된 Gd 함량 측정)

  • 김건식;양재호;송근우;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.916-920
    • /
    • 2003
  • The change of structure and morphology in ( $U_{0.913}$G $d_{0.087}$) $O_2$ during oxidation at 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using XRD, SEM, and EPMA. The ( $U_{0.913}$G $d_{0.087}$) $O_2$ cubic phase converted to ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase by oxidation at 475$^{\circ}C$ in air. The XRD and EPMA result of the 130$0^{\circ}C$ heat treated powder revealed that ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase was separated into $U_3$ $O_{8}$ and ( $U_{0.67}$G $d_{0.33}$) $O_{2+}$x/ cubic phase. The weight variations of (U,Gd) $O_2$ with various Gd contents were measured using TGA at the same heat treated condition. The weight variation during the heat treatment of Gd dissolve (U,Gd) $O_2$ in air can be expressed in terms of phase reaction equations related with oxidation and phase separation. Based on these phase reaction, a initial content of Gd dissolved in (U,Gd) $O_2$ can be exactly calculated by measuring the weight change during the heat treatment.

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane (SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성)

  • Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.415-421
    • /
    • 2015
  • $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.

Microwave Dielectric Properties of Ultra-Low Temperature Co-firable Ba3V4O13-BaV2O6 Ceramics (Ba3V4O13-BaV2O6계 초저온 동시소성 세라믹스의 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Hong, Seoyoung;Cho, Hyung-Hwan;Kim, Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.342-347
    • /
    • 2021
  • Phase evolution, sintering behavior, microstructure, and microwave dielectric properties of (1-x) mol Ba3V4O13 - (x) mol BaV2O6 system were investigated. The sintered specimens of all compositions consisted of Ba3V4O13 and BaV2O6, and no secondary phase was observed. As x increased, the linear shrinkage decreased to the composition of x=0.5, and then increased again, implying that Ba3V4O13 and BaV2O6 phases interfered mutually with each other during sintering. All compositions showed a dense microstructure with a large grain growth. Cracks were observed in some compositions because of the relatively high sintering temperature of 620~640℃. As x increased, the dielectric constant increased, while the quality factor was maintained from about 50,000 GHz to about 70,000 GHz up to the composition of x=0.9, and then decreased to 20,987~27,180 GHz at the composition of x=1.0. As x increased, the temperature coefficient of the resonance frequency showed a (+) value from a (-) value. The dielectric constant, the quality factor, and the temperature coefficient of resonant frequency of x=0.7 composition sintered at 640℃ for 4 hours were 10.61, 71,126 GHz, and -4.9 ppm/℃, respectively. This composition showed a good chemical compatibility with Al powder, indicating that the Ba3V4O13-BaV2O6 ceramics are a candidate material for ULTCC (Ultra-Low Temperature Co-fired Ceramics) applications.

The effect of repeated firings on the color of zirconia-based all-ceramic system (반복 소성이 지르코니아 전부도재관의 색조에 미치는 영향)

  • Jang, Jung-Eun;Kim, Mu-Hyon;Yun, Mi-Jung;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of repeated firings on the color of zirconia restoration with different shading method. Materials and methods: Three different types of zirconia frameworks (adding metallic pigments to the initial zirconia powder before sintering (Group NM), dipping the milled frameworks in dissolved coloring agents (Group KI), or application of liner material to the sintered white frameworks (Group KW) were used to support A3 shade dentin porcelain. Repeated firings (3, 5, or 7) were performed, color differences among ceramic specimens were measured using a colorimeter. Repeated measurements analysis of variance (ANOVA) was used to analyze the data for significant difference. The Tukey Honestly Significant Different (HSD) test was used to perform multiple comparisons (${\alpha}$ = .05). Results: 1. $L^*a^*b^*$ values of the ceramic systems were affected by the number of firings (1, 3, 5 or 7 firings) (P < .001) and shading methods (P < .001). 2. As the number of firings increased, the $L^*$ (for all groups) and $a^*$ value (for KW and NM groups) decreased and the $b^*$ value(for all groups) increased. 3. The mean color differences caused by repeated firings were perceptible (${\Delta}E$ > 1) for group KW and KI fired after 3 times, except for group NM fired after 7 times. 4. In order of decreasing ${\Delta}E$ value fired after 7 times, the values were group KI(${\Delta}E$ = 2.26) > group KW (${\Delta}E$ = 1.47) > group NM (${\Delta}E$ = 1.08) (P < .001). Conclusion: Repeated firings influenced the color of the zirconium-oxide all-ceramic specimens with different shading methods.

Preparation and properties of porous (Ca,Mg)0.15Zr0.7O1.7 ceramics (다공성 (Ca,Mg)0.15Zr0.7O1.7 세라믹스의 제조 및 특성)

  • Kim, Bok-Hee;Kim, Sang-Hee;Choi, Eun-Sil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • [ $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ]ceramics was investigated for the application to SOFC ceramic supporter with high porosity and mechanical strength. $ZrO_2$ powder was prepared by combustion method with glycine using the solution of $ZrO(NO_3)_2{\cdot}2H_2O$ dissolved into deionized water and calcination at $800^{\circ}C$ Porous $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics was prepared by sintering the mixture of prepared $ZrO_2$ powder, dolomite and carbon black at $1200{\sim}1400^{\circ}C$ for 1 h. The open porosity ofthe $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics sintered at $1300^{\circ}C$ was over 30 % and increased linearly with the amount of carbon black. The crystal structure of $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics consisted of single cubic phase. The open pore of this ceramics was connected continuously and distributed well on the whole. This ceramics sintered at $1300^{\circ}C$ showed the porosity from 32 to 55 % and mechanical strength from 90 MPa to 30 MPa with increasing the content of added carbon black.

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide (졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해)

  • Myung, Jung-Jae;Park, Jin-koo;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.777-783
    • /
    • 1997
  • $TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

  • PDF