Abstract
Ingots of rutile single crystals were grown by the skull melting method, and their characteristics were compared in terms of melt-dwelling time for each melt. The method is based on direct inductive heating of an electrically conducted melt by an alternating RF field, and the heating is performed by absorption of RF energy. $TiO_2$ is an insulator at room temperature but its electric conductivity increases elevated temperature. Therefore, titanium metal ring(outside diameter : 6cm, inside diameter : 4cm, thickness 0.2cm) was embedded into $TiO_2$, powder (anatase phase, CERAC, 3N) for initial RF induction heating. Important factors of the skull melting method are electric resistivity of materials at their melting point, working frequency of RF generator and cold crucible size. In this study, electric resitivity of $TiO_2$, $(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$ at its melting point was estimated by compairing the electric resitivities of alumina and zirconia. Inner diameter and height of the cold crucible was 11 and 14cm, respectively, which were determined by considering of the Penetration depth $(0.36\~1.13cm)$ and the frequency of RF generator.
스컬용융법에 의해 루틸 단결정들을 성장시켰으며, 서로 다른 융액의 유지시간에 따른 ingot의 특성을 비교하였다. 스컬용융법은 교류전자기장(RF)에 의해 전기가 흐르는 융액의 직접유도가열에 근거하며, 가열은 RF 에너지의 흡수로 실행된다. $TiO_2$는 상온에서는 부도체이지만 온도가 올라갈수록 전기 전도성이 증가한다. 따라서, 초기 RF 유도가열을 위해 티타늄 금속 링(외경 : 6cm, 내경 : 4cm, 두께 : 0.2cm)을 $TiO_2$ 분말(아나타제상, CERAC, 3N)내부에 묻었다. 스컬용융법에 의한 산화물 용융에서 매우 중요한 것은 융점에서의 전기 저항 값, RF generator의 주파수 그리고 냉각도가니 크기이다. 본 연구에서는, $TiO_2$의 융점에서의 전기저항$(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$은 알루미나$(10^{-1}\;{\Omega}{\cdot}m)$의 지르코니아$(10^{-3}\;{\Omega}{\cdot}m)$의 전기저항 데이터를 바탕으로 추정하였다. 냉각도가니의 내부직경은 11cm, 높이는 14cm였으며, 이것은 침투깊이$(0.36\~1.13cm)$와 RF generator 주파수를 고려하여 결정하였다