• 제목/요약/키워드: Cepstrum

검색결과 274건 처리시간 0.021초

정규화된 Mel-cepstrum을 이용한 숫자음 인식성능 향상에 관한 연구 (An Improved Digit Recognition using Normalized mel-cepstrum)

  • 이기철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.403-406
    • /
    • 1994
  • 음성은 화자의 상태 및 주변 환경에 따라 그 특징이 다양하게 변화한다. 본 논문에서는 음성신호의 특징 파라미터로 널리 쓰이고 있는 mel-cepstrum에 대해, 단어내에서의 변화를 정규화함으로써 인식성능을 향상시키고자 하였다. mel-cepstrum이란 단어 전체에 대한 mel-cepstrum의 평균 값으로 normalize 시킨 것이다. 한국어 숫자음에 대한 인식 실험결과, 본 논문에서 제안한 정규화된 mel-cepstrum이 정규화되지 않은 mel-cepstrum에 비해 우수한 인식 성능을 나타내었다. 또한 잡음 환경하에서 비교 실험한 결과에서도 상대적으로 우수한 인식률을 보였다.

  • PDF

최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론 (Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory)

  • 최영철;김양한
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

잡음에 강한 음성 인식을 위한 성문 가중 켑스트럼에 관한 연구 (Glottal Weighted Cepstrum for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.78-82
    • /
    • 1999
  • 본 연구는 잡음에 강한 음성 파라미터로써 널리 사용하는 가중 켑스트럼에 관한 연구이다. 특히 청각 모델인 PLP(Perceptual Linear Predictive)에서 켑스트럼을 추출 후 비대칭형 성문 펄스 파형 형태를 가중치 함수로 사용하는 방법을 제안한다. 또한 이러한 가중 켑스트럼을 성도 모델에서의 성도파형과 켑스트럼과 연관하여 분석하였다. 그리고 청각 모델인 PLP의 켑스트럼에 가중시켜 청각 모델과 성도 모델을 모두 적용한 음성 파라미터를 얻었다. 이러한 방법의 성능 평가를 위해 차량내 잡음과 길거리에서의 잡음 환경에서의 고립 단어 인식 실험을 하였다. 그리고 기존의 LP(Linear Prediction)에 의한 가중된 윈도우 켑스트럼 및 PLP에 의한 가중된 Liftering 켑스트럼 등과 비교하였다. 모의 실험 결과는 기존의 가중된 cepstrum 보다 제안하는 성문 가중 켑스트럼이 보다 높은 인식율을 보여준다.

  • PDF

Cepstrum을 이용한 폐음의 분석 및 패턴 분류 (A New Pattern Classification and the Analysis of the Lung Sound by Using Cepstrum)

  • 김종원;김성환
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.159-166
    • /
    • 1994
  • A new pattern classification algorithm using cepstrum to analyze lung sounds for the classification of pattern with pulmonary and bronchial disorders is proposed. To evaluate the perfomance of the proposed method, the results are compared to the pattern classification with the AR modeling method. In the experiment lung sounds recorded for the training of physician used. As a results, the accuracy of the cepstrum classification is 92.3 % and AR modeling is the 53.8 %, therefore cepstrum modeling method has very high performance than AR and it turned out to be a very efficient algorithm.

  • PDF

인지 LPC cepstrum의 새로운 구현 및 음성인식에의 적용 (A new Implementation of Perceptual LPC Cepstrum and its Application to Speech Recognition)

  • 김진영;최승호
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.61-64
    • /
    • 1996
  • 본 논문에서는 귀의 주요한 특징인 주파수가중특성과 Bark-scale이라는 비선형주파수특성을 선형주파수축상에서 고려한 거리함수를 정의하고, 이 거리함수로부터 새로운 LPC cepstrum 계수를 제안한다. 귀의 특성은 선형주파수축에서 로그 스펙트럼에 대한 가증함수로서 표현되며, 이 가중함수는 cepstrum 영역에서 콘볼루션으로 표현되어 콘볼루션적으로 가중되는 LPC cepstrum을 정의하게 된다. 제안된 cepstrum 계수에서 정의된 가중함수는 A-weighting의 영향과 비선형주파수축의 영향을 하나의 가중함수로 통합하여 사용된 것이다. 제안된 파라미터의 성능을 음성인식 실험을 통하여 검증하였다.

  • PDF

전화음성에 강인한 문장종속 화자인식에 관한 연구 (On a robust text-dependent speaker identification over telephone channels)

  • 정의상;최홍섭
    • 음성과학
    • /
    • 제2권
    • /
    • pp.57-66
    • /
    • 1997
  • This paper studies the effects of the method, CMS(Cepstral Mean Subtraction), (which compensates for some of the speech distortion. caused by telephone channels), on the performance of the text-dependent speaker identification system. This system is based on the VQ(Vector Quantization) and HMM(Hidden Markov Model) method and chooses the LPC-Cepstrum and Mel-Cepstrum as the feature vectors extracted from the speech data transmitted through telephone channels. Accordingly, we can compare the correct recognition rates of the speaker identification system between the use of LPC-Cepstrum and Mel-Cepstrum. Finally, from the experiment results table, it is found that the Mel-Cepstrum parameter is proven to be superior to the LPC-Cepstrum and that recognition performance improves by about 10% when compensating for telephone channel using the CMS.

  • PDF

FFT 켑스트럼의 처리시간 단축에 관한 연구 (On a Reduction of Computation Time of FFT Cepstrum)

  • 조왕래;김종국;배명진
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.57-64
    • /
    • 2003
  • The cepstrum coefficients are the most popular feature for speech recognition or speaker recognition. The cepstrum coefficients are also used for speech synthesis and speech coding but has major drawback of long processing time. In this paper, we proposed a new method that can reduce the processing time of FFT cepstrum analysis. We use the normal ordered inputs for FFT function and the bit-reversed inputs for IFFT function. Therefore we can omit the bit-reversing process and reduce the processing time of FFT ceptrum analysis.

  • PDF

LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식 (Speaker Recognition using LPC cepstrum Coefficients and Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2521-2526
    • /
    • 2011
  • 본 논문에서는 퍼셉트론 신경회로망과 선형예측부호화 켑스트럼 계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음 구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측부호화 켑스트럼 계수를 구한다. 구해진 선형예측부호화 켑스트럼 계수를 분류하기 위하여 이 켑스트럼 계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측부호화 켑스트럼 계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.

잡음환경에서의 음성인식을 위한 켑스트럼의 확률분포 정규화 기법 (Cepstrum PDF Normalization Method for Speech Recognition in Noise Environment)

  • 석용호;이황수;최승호
    • 한국음향학회지
    • /
    • 제24권4호
    • /
    • pp.224-229
    • /
    • 2005
  • 본 논문에서는 부가잡음 환경에서의 강인한 음성인식을 위해 켑스트럼의 확률밀도 (pdf) 정규화 기법을 제안한다. 기존의 방법들은 켑스트럼의 평균 및 분산 등 주로 1, 2차 통계치 만을 정규화 하지만 제안한 방법은 깨끗한 음성과 잡음이 부가된 음성의 켑스트럼의 pdf를 동일하게 함으로써 켑스트럼의 통계치를 완벽하게 정규화 한다. 목표 pdf로는 다양한 확률분포를 고려하기 위하여 일반 (generalized) 가우시안 분포를 선택하였다. 또한 인식시 계산량을 감축하기 위하여 표 참조방법 (table lookup method)를 개발하였다. 화자독립 고립단어 인식 실험에서 제안된 기법이 기존 방법들보다 우수한 성능을 보였으며, 특히 잡음이 심한 환경에서 성능향상이 두드러졌다.

음성 특징의 효율성 (EFFICIENCY OF SPEECH FEATURES)

  • 황규웅
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.225-227
    • /
    • 1995
  • This paper compared waveform, cepstrum, and spline wavelet features with nonlinear discriminant analysis. This measure shows efficiency of speech parametrization better than old linear separability criteria and can be used to measure the efficiency of each layer of certain system. Spline wavelet transform has larger gap among classes and cepstrum is clustered better than the spline wavelet feature. Both features do not have good property for classification and we will compare Gabor wavelet transform, Mel cepstrum, delta cepstrum, etc.

  • PDF