음성은 화자의 상태 및 주변 환경에 따라 그 특징이 다양하게 변화한다. 본 논문에서는 음성신호의 특징 파라미터로 널리 쓰이고 있는 mel-cepstrum에 대해, 단어내에서의 변화를 정규화함으로써 인식성능을 향상시키고자 하였다. mel-cepstrum이란 단어 전체에 대한 mel-cepstrum의 평균 값으로 normalize 시킨 것이다. 한국어 숫자음에 대한 인식 실험결과, 본 논문에서 제안한 정규화된 mel-cepstrum이 정규화되지 않은 mel-cepstrum에 비해 우수한 인식 성능을 나타내었다. 또한 잡음 환경하에서 비교 실험한 결과에서도 상대적으로 우수한 인식률을 보였다.
Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.
본 연구는 잡음에 강한 음성 파라미터로써 널리 사용하는 가중 켑스트럼에 관한 연구이다. 특히 청각 모델인 PLP(Perceptual Linear Predictive)에서 켑스트럼을 추출 후 비대칭형 성문 펄스 파형 형태를 가중치 함수로 사용하는 방법을 제안한다. 또한 이러한 가중 켑스트럼을 성도 모델에서의 성도파형과 켑스트럼과 연관하여 분석하였다. 그리고 청각 모델인 PLP의 켑스트럼에 가중시켜 청각 모델과 성도 모델을 모두 적용한 음성 파라미터를 얻었다. 이러한 방법의 성능 평가를 위해 차량내 잡음과 길거리에서의 잡음 환경에서의 고립 단어 인식 실험을 하였다. 그리고 기존의 LP(Linear Prediction)에 의한 가중된 윈도우 켑스트럼 및 PLP에 의한 가중된 Liftering 켑스트럼 등과 비교하였다. 모의 실험 결과는 기존의 가중된 cepstrum 보다 제안하는 성문 가중 켑스트럼이 보다 높은 인식율을 보여준다.
A new pattern classification algorithm using cepstrum to analyze lung sounds for the classification of pattern with pulmonary and bronchial disorders is proposed. To evaluate the perfomance of the proposed method, the results are compared to the pattern classification with the AR modeling method. In the experiment lung sounds recorded for the training of physician used. As a results, the accuracy of the cepstrum classification is 92.3 % and AR modeling is the 53.8 %, therefore cepstrum modeling method has very high performance than AR and it turned out to be a very efficient algorithm.
본 논문에서는 귀의 주요한 특징인 주파수가중특성과 Bark-scale이라는 비선형주파수특성을 선형주파수축상에서 고려한 거리함수를 정의하고, 이 거리함수로부터 새로운 LPC cepstrum 계수를 제안한다. 귀의 특성은 선형주파수축에서 로그 스펙트럼에 대한 가증함수로서 표현되며, 이 가중함수는 cepstrum 영역에서 콘볼루션으로 표현되어 콘볼루션적으로 가중되는 LPC cepstrum을 정의하게 된다. 제안된 cepstrum 계수에서 정의된 가중함수는 A-weighting의 영향과 비선형주파수축의 영향을 하나의 가중함수로 통합하여 사용된 것이다. 제안된 파라미터의 성능을 음성인식 실험을 통하여 검증하였다.
This paper studies the effects of the method, CMS(Cepstral Mean Subtraction), (which compensates for some of the speech distortion. caused by telephone channels), on the performance of the text-dependent speaker identification system. This system is based on the VQ(Vector Quantization) and HMM(Hidden Markov Model) method and chooses the LPC-Cepstrum and Mel-Cepstrum as the feature vectors extracted from the speech data transmitted through telephone channels. Accordingly, we can compare the correct recognition rates of the speaker identification system between the use of LPC-Cepstrum and Mel-Cepstrum. Finally, from the experiment results table, it is found that the Mel-Cepstrum parameter is proven to be superior to the LPC-Cepstrum and that recognition performance improves by about 10% when compensating for telephone channel using the CMS.
The cepstrum coefficients are the most popular feature for speech recognition or speaker recognition. The cepstrum coefficients are also used for speech synthesis and speech coding but has major drawback of long processing time. In this paper, we proposed a new method that can reduce the processing time of FFT cepstrum analysis. We use the normal ordered inputs for FFT function and the bit-reversed inputs for IFFT function. Therefore we can omit the bit-reversing process and reduce the processing time of FFT ceptrum analysis.
본 논문에서는 퍼셉트론 신경회로망과 선형예측부호화 켑스트럼 계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음 구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측부호화 켑스트럼 계수를 구한다. 구해진 선형예측부호화 켑스트럼 계수를 분류하기 위하여 이 켑스트럼 계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측부호화 켑스트럼 계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.
본 논문에서는 부가잡음 환경에서의 강인한 음성인식을 위해 켑스트럼의 확률밀도 (pdf) 정규화 기법을 제안한다. 기존의 방법들은 켑스트럼의 평균 및 분산 등 주로 1, 2차 통계치 만을 정규화 하지만 제안한 방법은 깨끗한 음성과 잡음이 부가된 음성의 켑스트럼의 pdf를 동일하게 함으로써 켑스트럼의 통계치를 완벽하게 정규화 한다. 목표 pdf로는 다양한 확률분포를 고려하기 위하여 일반 (generalized) 가우시안 분포를 선택하였다. 또한 인식시 계산량을 감축하기 위하여 표 참조방법 (table lookup method)를 개발하였다. 화자독립 고립단어 인식 실험에서 제안된 기법이 기존 방법들보다 우수한 성능을 보였으며, 특히 잡음이 심한 환경에서 성능향상이 두드러졌다.
This paper compared waveform, cepstrum, and spline wavelet features with nonlinear discriminant analysis. This measure shows efficiency of speech parametrization better than old linear separability criteria and can be used to measure the efficiency of each layer of certain system. Spline wavelet transform has larger gap among classes and cepstrum is clustered better than the spline wavelet feature. Both features do not have good property for classification and we will compare Gabor wavelet transform, Mel cepstrum, delta cepstrum, etc.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.