Abstract
This paper is a study on weighted cepstrum used broadly for robust speech recognition. Especially, we propose the weighted function of asymmetric glottal pulse shape. which is used for weighted cepstrum extracted by PLP(Perceptual Linear Predictive) based on auditory model. Also, we analyze this glottal weighted cepstrum from the glottal pulse of glottal model in connection with the cepstrum. And we obtain speech features analyzed by both the glottal model and the auditory model. The isolated-word recognition rate is adopted for the test of proposed method in the car moise and street environment. And the performance of glottal weighted cepstrum is compared with both that of weighted cepstrum extracted by LP(Linear Prediction) and that of weighted cepstrum extracted by PLP. The result of computer simulation shows that recognition rate of the proposed glottal weighted cepstrum is better than those of other weighted cepstrums.
본 연구는 잡음에 강한 음성 파라미터로써 널리 사용하는 가중 켑스트럼에 관한 연구이다. 특히 청각 모델인 PLP(Perceptual Linear Predictive)에서 켑스트럼을 추출 후 비대칭형 성문 펄스 파형 형태를 가중치 함수로 사용하는 방법을 제안한다. 또한 이러한 가중 켑스트럼을 성도 모델에서의 성도파형과 켑스트럼과 연관하여 분석하였다. 그리고 청각 모델인 PLP의 켑스트럼에 가중시켜 청각 모델과 성도 모델을 모두 적용한 음성 파라미터를 얻었다. 이러한 방법의 성능 평가를 위해 차량내 잡음과 길거리에서의 잡음 환경에서의 고립 단어 인식 실험을 하였다. 그리고 기존의 LP(Linear Prediction)에 의한 가중된 윈도우 켑스트럼 및 PLP에 의한 가중된 Liftering 켑스트럼 등과 비교하였다. 모의 실험 결과는 기존의 가중된 cepstrum 보다 제안하는 성문 가중 켑스트럼이 보다 높은 인식율을 보여준다.