• Title/Summary/Keyword: Centroid Sampling

Search Result 16, Processing Time 0.022 seconds

Use of the Centroid Method to Estimate Volumes of Japanese Red Cedar Trees in Southern Korea

  • Coble, D. W.;Lee, Young-Jin
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Cubic-meter volumes estimated from two proxy taper functions were compared to observed volumes of Japanese red cedar trees (Cryptomeria japonica D. Don) to evaluate accuracy and precision in the centroid method. Centroid volume estimates were also compared to volume estimates from existing whole-tree volume equations developed for another geographic region. This study found that one proxy function produced unbiased volume estimates while the other was biased. Volume estimates from the whole-tree equations were also biased. However, the volume estimates from the whole-tree equations were more precise than those from the centroid method. These results support previous studies that the centroid method can produce reliable volumes of trees when no other reliable volume equations exist.

System of Efficient Trademark Image Retrieval (효율적인 상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.160-161
    • /
    • 2010
  • In this paper, trademark image retrieval system is proposed by using color information and shape information. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. In particular, centroid by using the angular sampling can extract feature and reduce the processing time. Users can perform searchs using the color and shape information, and also the two methods by mixing can be used by weighting.

  • PDF

The Brand Image Retrieval System Based on Color and Shape (컬러와 형태에 기반을 둔 상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 2006
  • An image retrieval system retrieves and offers same of similar image based on various features of image. This paper present a brand image retrieval system based on color and shape of image. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. We accomplish the retrieval through a similarity measurement by using the color and shape information which is extracted in this way.

  • PDF

Comparison of Two Taper Functions in Estimating the Volume of Chamaecyparis obtusa Trees Using Centroid Method (중심치 방법을 이용한 편백림 간재적 추정을 위한 간곡선식의 비교)

  • Lee, Young-Jin;Kim, Hyung-Ho
    • Journal of agriculture & life science
    • /
    • v.43 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • This study was conducted to compare volumes estimated from two taper functions and observed volumes of Chamaecyparis obtusa trees to evaluate accuracy and precision of centroid method. Centroid volume estimates were also compared with volume estimates from existing Forest Resources Evaluation and Prediction Program. The results of this study showed that Gregoire's simple taper function produced unbiased volume estimates while the others were biased. Volume estimates from the Forest Resources Evaluation and Prediction Program were also biased when applied in the Jangseong National Forest regions. These results suggested that the centroid method could produce reliable stem volumes of trees when no other reliable stem volume equations exist.

Trademark Image Retrieval System (상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Baik, Seong-Eun;Pyo, Seong-Bae;Rhee, Yang-Won
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.185-190
    • /
    • 2007
  • An image retrieval system is a piece of software that searches identical or similar images based on various image-specific features. This paper proposes a trademark image retrieval system that uses image colors and forms. In the proposed system, input images are segmented into several other regions, and color distribution histograms for different regions are extracted for use as color information. The proposed system uses form information through the preprocessing process such as boundary surface extraction, centroid extraction, angular sampling and, and through calculating the sums of the distances between the centroid and the boundary surfaces, standard deviations, and the ratios between long and short axes. Like this, the color and form information extracted is used to perform retrieval through measuring similarity.

  • PDF

Controller Design for Object Tracking with an Active Camera (능동 카메라 기반의 물체 추적 제어기 설계)

  • Youn, Su-Jin;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

Walking Motion Planning for Quadruped Pet Robot (4족 애완로봇을 위한 보행운동 계획)

  • Yi, Soo-Yeong;Choi, Dae-Sung;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • A motion planning algorithm is presented in this paper for a commercialized quadruped walking of robot pet. Stable walking is the basic requirement for a commercial-purpose legged robot. In order to secure the walking stability, modified body sway to the centroid of support polygon is addressed. By representation of walking motion with respect to the world coordinate system rather than body coordinate, it is possible to design the several gaits in unified fashion. The initial gait posture is introduced to maximize the stride and to achieve fast walking. The proposed walking motion planning is verified through computer simulation and experiments.

Forward Mapping of Spaceborne SAR Image Coordinates to Earth Surface

  • Shin, Dong-Seok;Park, Won-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.273-280
    • /
    • 2002
  • This paper describes a mathematical model and its utilization algorithm for calculating the accurate target position on the ellipsoidal earth surface which corresponds to a range-azimuth coordinates of unprocessed synthetic aperture radar (SAR) images. A geometrical model which is a set of coordinate transformations is described. The side-looking directional angle (off-nadir angle) is determined in an iterative fashion by using the model and the accurate slant range which is calculated from the range sampling timing of the instrument. The algorithm can be applied not only for the geolocation of SAR images but also for the high quality SAR image generation by calculating accurate Doppler parameters.

Estimation of Ultrasonic Attenuation Coefficients in the Frequency Domain using Compressed Sensing (압축 센싱을 이용한 주파수 영역의 초음파 감쇠 지수 예측)

  • Shim, Jaeyoon;Kim, Hyungsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.167-173
    • /
    • 2016
  • Compressed Sensing(CS) is the theory that can recover signals which are sampled below the Nyquist sampling rate to original analog signals. In this paper, we propose the estimation algorithm of ultrasonic attenuation coefficients in the frequency domain using CS. While most estimation algorithms transform the time-domain signals into the frequency-domain using the Fourier transform, the proposed method directly utilize the spectral information in the recovery process by the basis matrix without the completely recovered signals in the time domain. We apply three transform bases for sparsifying and estimate the attenuation coefficients using the Centroid Downshift method with Dual-reference diffraction compensation technique. The estimation accuracy and execution time are compared for each basis matrix. Computer simulation results show that the DCT basis matrix exhibits less than 0.35% estimation error for the compressive ratio of 50% and about 6% average error for the compressive ratio of 70%. The proposed method which directly extracts frequency information from the CS signals can be extended to estimating for other ultrasonic parameters in the Quantitative Ultrasound (QUS) Analysis.

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.