• Title/Summary/Keyword: Center of gravity of vehicle

Search Result 61, Processing Time 0.028 seconds

A Experimental Study on the Measurement and Estimation of Vehicle Center of Gravity (차량무게중심의 측정 및 추정에 관한 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The center of gravity on vehicle is a fundamentally important point for assessing and measuring the characteristics of vehicle dynamics. Especially, the center of gravity height on vehicles is the closest factor with respect to rollover accidents in a social issue nowadays. In this paper, the center of gravity height in conjunction with vehicle parameters of vehicle weight, driving axle and roof height after measured by vehicle weight and loading location by means of VCGM developed by KATRI with good performance that the accuracy was less than 0.6% and repeatability 0.3% for vehicles being used in the whole world was observed. As a result of study, the location of center of gravity height on vehicle was able to be estimated with only roof height on vehicle.

Field Measurement of the Center of Gravity and the Moment of Inertia of Railway Vehicles Using Vibration (진동을 이용한 철도차량의 무게중심과 관성모멘트 현장 측정)

  • Song, Ki-Seok;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.878-884
    • /
    • 2013
  • The center of gravity and the moment of inertia of railway vehicles are important parameters for running safety and stability in railway vehicle design. However, the exact measurement of those is difficult in manufacturing field. The weight measurement of a railway vehicle beneath the wheel using a weight scale is off by a large amount. This paper suggests a measurement method for the center of gravity and the moment of inertia of railway vehicles using vibration. For the measurement a railway vehicle is suspended using four wires. Direct measurement of the tension of the wires and the period of swinging motion of the suspended railway vehicle with calculations give the exact location of the center of gravity and the moment of inertia in x, y, and z directions, respectively. This implementation was demonstrated using an experimental device and verified numerically.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

An analysis on the Earth geoid surface variation effect for use of the tilt sensor in celestial navigation system

  • Suk, Byong-Suk;Yoon, Jae-Cheol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1867-1870
    • /
    • 2005
  • The celestial navigation is one of alternatives to GPS system and can be used as a backup of GPS. In the celestial navigation system using more than two star trackers, the vehicle's ground position can be solved based on the star trackers' attitude information if the vehicle's local vertical or horizontal angle is given. In order to determine accurate ground position of flight vehicle, the high accurate local vertical angle measurement is one of the most important factors for navigation performance. In this paper, the Earth geophysical deflection was analyzed in the assumption of using the modern electrolyte tilt sensor as a local vertical sensor for celestial navigation system. According to the tilt sensor principle, the sensor measures the tilt angle from gravity direction which depends on the Earth geoid surface at a given position. In order to determine the local vertical angle from tilt sensor measurement, the relationship between the direction of gravity and the direction of the Earth center should be analyzed. Using a precision orbit determination software which includes the JGM-3 Earth geoid model, the direction of the Earth center and the direction of gravity are extracted and analyzed. Appling vector inner product and cross product to the both extracted vectors, the magnitude and phase of deflection angle between the direction of gravity and the direction of the Earth center are achieved successfully. And the result shows that the angle differences vary as a function of latitude and altitude. The maximum 0.094$^{circ}$angle difference occurs at 45$^{circ}$latitude in case of 1000 Km altitude condition.

  • PDF

A Study on the Vehicle Dynamics and Road Slope Estimation (차량동특성 및 도로경사도 추정에 관한 연구)

  • Kim, Moon-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

Depth Control of Underwater Glider Using Reduced Order Observer (축소 차원 관측기를 사용한 수중 글라이더의 깊이 제어)

  • Joo, Moon-Gab;Woo, Him-Chan;Son, Hyeong-Gon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.311-318
    • /
    • 2017
  • A reduced order observer is developed for depth control of a hybrid underwater glider which combines the good aspects of a conventional autonomous underwater vehicle and a underwater glider. State variables include the center of gravity of the robot and the weight of the buoyancy bag, which can not be directly measured. By using the mathematical model and available information such as directional velocities, accelerations, and attitudes, we developed a Luenberger's reduced order observer to estimate the center of gravity and the buoyancy weight. By simulations using Matlab/Simulink, the efficiency of the proposed observer is shown, where a LQR controller using full state variables is adopted as a depth controller.

Signal Processing of Guide Sensor based on Multi-Masking and Center of Gravity Method for Automatic Guided Vehicle (다중 마스킹과 무게중심법을 기반한 AGV용 가이드 센서 신호처리)

  • Lee, Byeong-Ro;Lee, Ju-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • The most important device of the AGV is the guide sensor, and the typical function of this sensor is high accuracy and extraction of the road. If the accuracy of the guide sensor is low or the sensor device is extracted the wrong track, this causes the problems such as the AGV collision, track-out, the load falling due to AGV swing. In order to improve these problems, this study is proposed a signal processing method of the guide sensor based on multi-maskings and the center of gravity method, and evaluated its performance. As a result, the proposed method showed that the mean error of absolute value is 2.32[mm] and it showed performance improvement of 27[%] than the center of gravity method of existence. Therefore, when the proposed signal processing method is applied, It is thought that the posture control and driving stability of the AGV will be improved.

A Study on the Effect of Vehicle Emission on Gasoline Property (휘발유 물성조성에 따른 자동차 배출가스 영향 연구)

  • Lim, Jae-Hyuk;Lee, Jin-Hong;Kim, Ki-Ho;Lee, Min-Ho
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.51-57
    • /
    • 2018
  • In Korea, the Air Quality Conservation Act and the Petroleum and Petroleum Substitute Fuel Business Act stipulate certain quality standards for fuels distributed in Korea, thereby striving to reduce vehicle performance and emissions. Domestic petroleum products import and produce all the crude oil from each oil refiner so that the quality of the petroleum product is different according to the characteristics of the crude oil. As a result, vehicles have been improved by using the physical properties calculated through the physical property measurement that has tried to improve the accuracy of the measurement of the energy consumption efficiency of the automobile by using standard fuel from abroad. In this study, the same test procedure and method as the test method of domestic gasoline vehicle emission are applied using four samples of gasoline and the latest gasoline vehicle which are actually distributed, and the performance evaluation is performed. The purpose of this study is to contribute to improvement of vehicle technology and fuel quality by collecting necessary basic data and obtaining data on the effect of differences in gasoline property on vehicle emissions. The results of the test showed that the emission of gases (NMOG, CO) from gasoline vehicles was the most influenced by the sulfur content, unlike the previous studies that the vehicles emission had the greatest influence on the distillation characteristics and the specific gravity of aromatic compounds. The catalytic reaction such as the poisoning action of the three-way catalyst which is the abatement device was interfered and the emission was increased. The distillation characteristics and specific gravity of aromatic compounds were found to affect the emission of vehicles. According to the physical properties of the fuel, the emission difference was 28.0% in the urban mode and 17.6 % in the highway mode.

A Study on Roll Characteristics of Railway Vehicle (철도차량 롤 특성에 대한 고찰)

  • 김필환
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.512-521
    • /
    • 1998
  • The roll characteristic of railway vehicle is an important factor that affects the roll-over of vehicle and lateral ride comfort of passenger. Generally the roll characteristics of railway vehicle is defined by the term of roll-coefficient, s, which represents the ratio of incline or carbody to that of rail-cant. The limit values of roll coefficient recommended in UIC Bre 0.4 for coach without pantograph and 0.15 for vehicle with pantograph. The roll coefficient can be calculated by VAMPIRE that is the well-known commercial software for analysis of dynamic behavior of railway vehicle. The value of roll coefficient is effected by height of gravity center of carbody, stiffness of primary and secondary suspension and etc. The calculated roll-coefficient for electric locomotive and passenger coach is 0.12 and 0.77 respectively, The additional equipment such as anti-roll bar is considered in order to decrease roll-coefficient of passenger coach. In relation to roll characteristics, the analysis for roll-over due to wind is a1so performed. The results show that roll-characteristics affect the roll-over of vehicle.

  • PDF