• Title/Summary/Keyword: Cement thickness

Search Result 270, Processing Time 0.025 seconds

Explosion Proof of Fiber Reinforced Cement Composite Panel subjected to Contact Explosion (접촉폭발에 의한 섬유보강 시멘트 복합체의 방폭성능)

  • Kim, Yun-Hwan;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Bo-Kyeong;Lee, Sang-Gyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.128-129
    • /
    • 2016
  • This paper evaluates experimentally the explosion proof of fiber reinforced cement composite(FRCC) panels with various fibers of 2 % volume fraction subjected to contact explosions using an emulsion explosive. As a results, the proportion of the total damage in FRCC panels is not biased scabbing on the rear side with contrast to plain panels, which means that the local damage of FRCC panels was significantly controlled. The experimental results presented useful information for prediction of limited thickness on the local damage subjected to contact explosions through comparison with existing damage evaluation prediction equations.

  • PDF

A Study on the Properties of Porous Concrete For Kelp Forest Regeneration Using Cement Coating Granular Fertilizer (시멘트 코팅 입상비료를 이용한 조장조성용 포러스콘크리트의 특성에 관한 연구)

  • Park Seong Bum;Lee Jun;Kim Jeong Hwan;Seo Dae Seuk;Lee Byung Jae;Song Jae Lib
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.489-492
    • /
    • 2005
  • The Purpose of this study is to develope the method for early recovery of the biodiversity in the oligotrophical costal area. The result of this study, the dissolution ratio is superior in the case which the cement coating thickness of the granular fertilizer is below 1mm. From the failure-side it is judged with the fact that appropriate to use the separate charging method and vibration compaction method. For the cases of the mixing ratio of cement coating granular fertilizer, there was not any clear tendency for the change of the strength up to 20$\%$ of the mixing ratio. However, at the 30$\%$ mixing ratio, decrease of the strength was noticed. So it can be concluded that the stability can be achieved in the range of 20$\%$ and below.

  • PDF

Acellular dermal matrix and bone cement sandwich technique for chest wall reconstruction

  • Heo, Chan Yeong;Kang, Byungkwon;Jeong, Jae Hoon;Kim, Kwhanmien;Myung, Yujin
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.25-28
    • /
    • 2022
  • The authors performed rigid reconstruction using the sandwich technique for full-thickness chest wall defects by using two layers of acellular dermal matrix and bone cement. We assessed six patients who underwent chest wall reconstruction. Reconstruction was performed by sandwiching bone cement between two layers of acellular dermal matrix. In all patients, there was no defect of the overlying soft tissue, and primary closure was performed for external wounds. The average follow-up period was 4 years (range, 2-8 years). No major complications were noted. The sandwich technique can serve as an efficient and safe option for chest wall reconstruction.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

NDT Determination of Cement Mortar Compressive Strength Using SASW Technique

  • Cho, Young-Sang
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2001
  • The spectral analysis of surface waves (SASW) method, which is an in-situ seismic technique, has mainly been developed and used for many years to determine the stiffness profile of layered media (such as asphalt concrete and layered soils) in an infinite half-space. This paper presents a modified experimental technique for nondestructive evaluation of in-place cement mortar compressive strength in single-layer concrete slabs of rather a finite thickness through a correlation to surface wave velocity. This correlation can be used in the quality control of early age cement mortar structures and in evaluating the integrity of structural members where the infinite half space condition is not met. In the proposed SASW field test, the surface of the structural members is subjected to an impact, using a 12 mm steel ball, to generate surface wave energy at various frequencies. Two accelerometer receivers detect the energy transmitted through the medium. By digitizing the analog receiver outputs, and recording the signals for spectral analysis, surface wave velocities can be identified. Modifications to the SASW method includes the reduction of boundary reflections as adopted on the surface waves before the point where the reflected compression waves reach the receivers. In this study, the correlation between the surface wave velocity and the compressive strength of cement mortar is developed using one 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slab of 2,000 psi (140 kgf/$\textrm{cm}^2$) and two 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slabs of 3,000 psi (210 kgf/$\textrm{cm}^2$).

  • PDF

Bond strength of resin cement to $CO_2$ and Er:YAG laser-treated zirconia ceramic

  • Kasraei, Shahin;Rezaei-Soufi, Loghman;Heidari, Bijan;Vafaee, Fariborz
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.296-302
    • /
    • 2014
  • Objectives: It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of $CO_2$ and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods: In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, $CO_2$ and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results: The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were $8.65{\pm}1.75$, $12.12{\pm}3.02$, and $5.97{\pm}1.14MPa$, respectively. Data showed that application of $CO_2$ and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions: Pretreatment of zirconia ceramic via $CO_2$ and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the $CO_2$ laser treated samples.

Bend Resistance of Polymer Cement Slurry Coated Reinforcing bars (폴리머 시멘트 슬러리 도장철근의 내굴곡성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1017-1022
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by adhesion strength of bar and coating materials and transformation of coating materials to the bar. Expecially, tearing state or a limited microscopic cracks are predicted on the inside and outside of bending angle because of adhesion strength and elongation is very different with types of polymer materials using bar coating, and these parts are accelerated corrosion as penetration of bar corrosion effects factor. In this study, cement modified polymer are prepared four types and differ from polymer cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 280days, and then tested bend resistance as bending angle $90^{\circ}$, $135^{\circ}$ and $180^{\circ}$ for observe the microscopic demage effect according as bar bend. From the test results, when is used cement modified polymer as coating materials of bar, St/BA is showed excellent bend resistance than a polyacrylic emulsion and SBR because of softness. But it is to need attention because as coating parts are pressed down and tearing, also experimental study is proceeded to corrosion potential on the inside and outside of coated reinforcing bar.

  • PDF

The Analysis of Stress and Variation of Cement Thickness as the Variation of Design Variables for Custom-Made Hip Implant (Cement Type 맞춤형 인공고관절의 설계 변수 변화에 따른 Cement 두께 변화와 이에 대한 응력 분석)

  • Park, Heung-Seok;Chun, Heoung-Jae;Youn, In-Chan;Lee, Moon-Kyu;Seo, Duck-Chan;Choi, Kui-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.402-408
    • /
    • 2006
  • The choice of suitable hip implant is one of important factors in the total hip arthroplasty (THA). In clinical view point, an improper adaptation of hip implant might induce abnormal stress distribution to the bone, which can shorten the lifespan of replaced hip implant. Currently, interest in the custom-designed hip implants has increased as studies reveal the significance of geometric shape of patient's femur in modeling and designing the implants. In this study, we have developed custom-designed hip implant models with various sizes, and analyzed the stress distribution in the bone and bone cement using the Finite Element Method. It was found that minimizing the gap between implant stem and femoral cavity is crucial to minimize the stress concentration in the bone.

Temperature Control of Mass Concrete with low heat concrete mixtures (저발열 콘크리트 배합에 따른 매스콘크리트 온도 제어)

  • Park, Chan-Kyu;Jang, Jeong-Gi;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Seong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.505-508
    • /
    • 2008
  • In this study, temperature increase and strength development of concretes with different types of cement were investigated to construct dam drop spillway. For this purpose, boxes of 1${\times}$1${\times}$1m size with 4 different concrete mixtures were made. The types of concrete were Type I cement concrete, fly ash cement concrete and two type concrete with ternary cement, respectively. The temperature at each point were monitored in these boxes. Based on the Box test, hydration analysis of slab of 2.0m thickness was carried out. This paper presents these experimental and analytical results.

  • PDF

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.