• Title/Summary/Keyword: Cement matrix

Search Result 317, Processing Time 0.022 seconds

Effects of the Ultrafine and Nano-sized Clay on Rheological Behavior of the Matrix of ρ-alumina Bonded Castable

  • Cheon, Sungho;Jun, Byungsei
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.632-636
    • /
    • 2003
  • To prepare the alumina cement free vibrated alumina castable, $\rho$-alumina is employed as a binder material, and nano-sized clay is added to enhance the curing strength and give thixotropic behavior. The rheological behavior of matrix of castable is controlled by investigating the influences of ultrafines, $\rho$-alumina, and nano-sized clay on the viscosity of matrix. The microsilica and ultrafine alumina were added 3 wt% and 4 wt%, respectively to the matrix, which showed that the viscosities tends to be lowest values. The rheological property of the matrix is well established by adding $\rho$-alumina as 8 wt% and clay as 4 wt%. The thixotropic behavior of the $\rho$-alumina bonded castable was appeared by introducing nano-sized clay into the matrix and adjusting the pH near to the PZC of the clay suspension.

Effect of Natural Jute Fiber on Bond between Polyolefin Based Macro Fiber and Cement Matrix (폴리올레핀계 매크로 섬유와 시멘트 경화체의 부착특성에 미치는 천연마섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.251-260
    • /
    • 2011
  • In this study, the effect of natural jute fiber volume fraction on the bond characteristics of polyolefin based macro fiber in natural jute fiber reinforced cement composites, including bond strength, interface toughness, and microstructure analysis are presented. The experimental results on polyolefin based macro fiber pullout test of different conditions are reported. Natural jute fiber volume fractions ranging from 0.1% to 0.2% are used in the mix proportions. Pullout tests are conducted to measure the bond characteristics of polyolefin based macro fiber from natural jute fiber reinforced cement composites. Test results are found that the incorporation of natural jute fiber can effectively enhance the polyolefin based macro fiber-cement matrix interfacial properties. The bond strength and interface toughness between polyolefin based macro fiber and natural jute fiber reinforced cement composites increases with the volume fraction of natural jute fiber. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가)

  • Lee, Sang-Il;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.258-262
    • /
    • 2001
  • The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

  • PDF

AN EXPERIMENTAL STUDY ON THE SURFACE POLISHING EFFECTS OF VARIOUS RESTORATIVE MATERIALS (수종(數種) 수복물(修復物)의 표면(表面) 연마효과(硏磨效果)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Young-Ho;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.103-114
    • /
    • 1984
  • The purpose of this study was to compare the polished surfaces of two composite resins (Clearfil F and Durafill) with those of glass ionomer cement (Fuji ionomer cement) and to observe what types of polishing devices are valuable, and then to establish a clinically satisfactory procedures. Studies have been undertaken to determine the effects of glass plate matrix and finishing instruments (Carborundum point, White point and Sof-Lex medium) on the surface finish of three restorative materials. The results were examined with profilometer (Kosaka laboratory LTD. Tokyo, Japan) and scanning electron microscopy (JSM-T20: JEOL). The results were as follows: 1. The most satisfactory surface finishes were produced against glass matrix. 2. Coarser finishes were obtained with use of carborundum point. 3. Generally Fuji ionomer cement were left surfaces with higher roughness values. 4. The smoothest finishes were obtained with Sof-lex medium. 5. Clearfil-F was showed more smoother than the other restorative materials.

  • PDF

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

Hydration Properties of Cement Matrix using Electrolysis Alkaline Aqueous and Ground Granulated Blast Furnace Slag (전기분해 알칼리 수 및 고로슬래그 미분말 혼입 시멘트 경화체의 수화 특성)

  • Jung, Yoong-Hoon;Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 2021
  • Cement has been used as a main material in the modern construction industry. However, it has been pointed out as a main cause of global warming due to carbon dioxide generated during manufactured. Recently, research that replacing cement substitute to industrial by-products such as Blast Furnace Slag which is by-producted in steelworks. When Blast Furnace Slag is used as a cement substitute, it shows a problem of lower initial strength, which is caused by glassy membrane on the particle surface. In this study, we used Electrolysis Alkaline Aqueous to improve the usability and problem of lower initial strength. As a result of the experiment, cement matrix using Blast Furnace Slag and Alkaline Aqueous showed initial strength and hydrate product were developed than that using general mixing water. Also, as a result of porosity analysis, It was confirmed that cement matrix using Alkaline Aqueous and Blast Furnace Slag has a tighter structure in internal porosity and porosity distribution than using general mixing water.

Sulfuric acid and Hydrochloric acid resistance properties of Light Weight Matrix Based on Blast furnace slag (고로슬래그 기반 경량 경화체의 황산 및 염산 저항 특성)

  • Kim, Weon-Jeong;Lee, Seung-Ho;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.137-138
    • /
    • 2015
  • The use of the cement and increased with the recent development of the construction industry. If the cement is the environmental problems caused by generating a large quantity of CO2 and the production process. Accordingly, this study is the test to determine the sulfuric acid and hydrochloric acid resistance properties of the Light weight matrix product of blast furnace slag-based light. A result, the compression strength of the sulfuric acid and hydrochloric acid immersion showed alower strength than the Plain.

  • PDF

Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages (특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성)

  • 원종필;박찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

Strength Properties of according to the Red mud replacement of Lightweight Matrix based on Blast Furnace Slag (고로슬래그 기반 경량 경화체의 레드머드 치환에 따른 강도특성)

  • Kim, Yun-Mi;Kim, Won-Jong;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.244-245
    • /
    • 2014
  • This is an experimental study on manufacturing of non-cement matrix. Materials like cement and blowing agent in foamed concrete is replaced by by-products from blast furnace slag and paper ash. Further, the experiment was performed by replacing alkali with red mud by (0, 5, 10, 15, 25, 35, 45) of weight of alkali (wt.%) in order to reduce the amount of expensive alkali acclerator. Sample Plain with density showed lowest. The compressive strength test result, showed a similar trend with density. And it showed that compressive strength of the RM-0.05 was highest.

  • PDF