• Title/Summary/Keyword: Cement concrete

Search Result 4,038, Processing Time 0.026 seconds

A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement (혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구)

  • 송용순;노재호;강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.281-289
    • /
    • 1998
  • This study has been performed to test the flowability and filling ability of high flowing concrete as well as distribution of aggregate and pore of core specimen, heat of hydration, compressive strength and core strength of concrete. In addition, the resistance to chloride ion penetration and chemical solutionof concrete was tested in order to evaluate the resistance to sea water of concrete and its application of high flowing concrete using blended low heat cement in the field of Seohae Grand Bridge. The properties of high flowing concrete with blended low heat cement were compared with ordinary 25-240-15 concrete using Type V cement. As the results of this study, the flowability and filling ability of high flowing concrete with blended low heat cement is satisfied without vibration. Though the cement content of high flowing concrete with blended low heat cement was 400kg/m$^2$, the rising temperature of it was relatively lower than that of the ordinary 25-240-15 concrete with Type V cement. Also, the compressive of high flowing concrete with blended low heat cement is similar to that of the ordinary 25-240-15 concrete with Type V cement.

Fundamental Propeties of Premix Type Polymer Cement Mortar (프리믹스 타입 폴리머 시멘트 모르터의 기초적 성질)

  • 연규석;주명기;최동순;김기락;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.641-646
    • /
    • 1997
  • Polymer cement mortar which is used as material for aging concrete structures is generally mixed manually and applied on the job site. but, to secure the required quality of the mortar, pre-mixed polymer cement mortar is favored. This study was initiated to four different pre-mixed polymer cement mortars which are produced in Korea. The for pre-mixed mortars were selected and tested with respect to physical and mechanical properties an proved that their qualities were better than those of common cement concrete mortars.

  • PDF

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

A Study on the Engineering Properties of Concrete Using Cement Kiln Dust (킬른더스트를 사용한 콘크리트의 공학적 특성에 관한 연구)

  • 김기정;황인성;차천수;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.267-270
    • /
    • 2003
  • This study is intended to investigate the engineering properties of concrete, in which cement and fine aggregate are replaced with cement kiln dust(CKD), such as the properties of fresh concrete and hardened concrete and hydration heat history, for effective using method of CKD, a by-product produced in the process of making cement. According to the results, as the replacing ratio of CKD increases, slump and air content of concrete decreases remarkably due to an increase of viscosity and filling of the pores. As the properties of setting, initial and final setting time are shortened with an increase of the replacing ratio of CKD, and as the replacement of CKD for fine aggregate increases, setting time is shortened more greatly. Compressive strength increases due to filling of the pores and reduction of air content in comparison with plain concrete. When the replacement ratio of CKD for cement is 10% and 15%, peak temperature of hydration heat lowers slightly, but it goes up in the case of replacement of CKD for fine aggregate. Also, when cement and fine aggregate is replaced with CKD by 2.5% and 7.5% respectively(1C3S) in the case of replacement of CKD for cement and fine aggregate, it is highest.

  • PDF

The On-site Quality Characteristics of the Cold Weather Concrete using High Early Strength Portland Cement (조강포틀랜드시멘트를 사용한 한중콘크리트의 현장품질 특성)

  • Lee, Won-Am;Um, Tae-Sun;Ryu, Jae-Sang;Lee, Jong-Ryul;Kang, Ji-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.224-227
    • /
    • 2004
  • The cement can be influenced by the temperature. Especially, when it is cold weather, it causes some problems in such properties as mixing, placing and curing of concrete. According to the Concrete Standard Specification(2003), in case of the average daily outdoor temperature below $4^{\circ}C$, it recommends to use the cold weather concrete. In this research, the on-site quality characteristics of the cold weather concrete using high early strength portland cement(Type III cement) were studied. As a result, the cold weather concrete using high early strength portland cement can obtain its excellent properties and benefit the cost of construction.

  • PDF

Physical Properties of Soil Concrete Using Volcaniclastic and the Application to Roadway (화산쇄설물을 사용한 소일콘크리트의 물리적 특성과 도로포장의 적용)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.993-1000
    • /
    • 2009
  • The development of a new type of soil-cement concrete pavement using volcaniclastic is the main purpose of this study. Various mixture ratios, specimens' penetration resistance, time of setting, slump flow of fleshly mixed concrete, compressive strength and color characteristics of hardened concrete were studied. It was concluded that the optimum weight ratio of cement:volcaniclastic to produce good properties of soil-cement concrete is 1:3 and the use of volcaniclastic as main aggregate can improve the concrete surface color that is warm earth-tone road color. Therefore, commercial development for soil-cement concrete pavement using volcaniclastic is highly promising.

Estimation on the Sulfate Ion Diffusivity in Concrete by Accelerated Test (촉진시험에 의한 콘크리트중의 황산이온 확산계수 추정)

  • 문한영;김성수;김홍삼;이승태;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.425-428
    • /
    • 2000
  • When concrete structures are exposed to sulfate or marin environments, sulfate ions penetrated into concrete make it deteriorate. An accelerated test under potential difference method was performed to evaluate not only the sulfate ion diffusivity in ordinary portland cement and ground granulated blast-furnace slag cement concretes but the effect of slag replacement and water-cement ratio on the sulfate ions diffusivity. As the result of this study, we assumed the sulfate ion diffusivity was significantly related with total passed charge and initial current in concrete. Moreover sulfate ions penetration resistance of ordinary portland cement concrete was superior to that of ground granulated blast-furnace slag cement concrete.

  • PDF

Behavior of Precast Concrete Box Culvert Using Expansive Cement (팽창시멘트를 이용한 프리캐스트 콘크리트 박스 암거의 거동에 관한 연구)

  • Jo, Byung-Wan;Tae, Ghi-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.159-169
    • /
    • 2002
  • This study is intended to discuss the application of expansive additives for concrete to improve the durability of precast concrete box culvert by inducing the chemical prestress. The precast concrete box culvert using expansive cement are tested to verify the effect of expansive additives. The results show that the initial cracking load and yielding load of the expansive cement numbers are increased when they are compared with those of the normal concrete. In the prototype precast concrete box culvert experiment, initial crack control effect and strength of joint are increased, but the deflection is decreased by expansive cement. Brides, reinforcement ratio is decreased about 14.6 percent in compering with the case of using normal cement. If can be the concluded that the use of expansive additives to induce the chemical prestress was improve the durability in concrete box culvert.

Influence of Chemical Admixtures on Flyahe Paste and Concrete (플라이애쉬 페이스트 및 콘크리트에 화학혼화제가 미치는 영향)

  • 이진용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • It was investigated to evaluate the characteristics of cement-flyash paste affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. In order to improve the early strength, the use of $Na_2SO_4$ in cement-flyash paste increased the quality of concrete. In addition, the strength of concrete including 30% of fly ash has improved and obtained the highest strength compared to other concrete mix.

  • PDF

A Study of Concrete Mix Proportioning Design using Blast-furnace Slag Cement (고로슬래그시멘트를 사용한 콘크리트 배합설계에 관한 연구)

  • 백광섭;차태환;노재호;박연동;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.113-118
    • /
    • 1995
  • The purpose of this study is to suggest concrete mix proportioning design using Blast-furnace slag cement. The mix conditions are specified by concrete strength(180~400kg/$\textrm{cm}^2$), slump$(15\pm2cm)$m and air volume$(4.5\pm1%)$. From the result of concrete mix proportioning design using Blast-furnace slag cement, unit water content can be reduced by 3~8% comparing with OPC. The relationship between strength at 28days and cement water ratio is as follow. when blast-furnace slag cement is used: $\sigma_{28}$=304.OC/W-296.8. Super-plasticizer have to be used to get a slump of 15cm when water/cement ratio is less than 45%.

  • PDF