• Title/Summary/Keyword: Cement concrete

Search Result 4,033, Processing Time 0.032 seconds

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Microscopic Analysis of Early Age Cement Paste Axially Compressed 20% (20% 축압축 시킨 초기재령 시멘트 페이스트 미세 분석)

  • 김성훈;김동완;양종석;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.189-194
    • /
    • 2002
  • Many researches in the past have shown that a majority initial cracking in concrete are caused during early age period. Therefore, the close examination of early age concrete behavior under various stress conditions is necessary to fully understand the cracking mechanism of concrete. In this study early age cement paste specimen is axially strained up to 20% of its original length by laterally reinforcing it. This type of test is called "Tube Squash Test" and has been previously used to apply up to 50% axial strain on concrete. Microscopic analyses (XRD, FESEM, EDS and DSE/TG) are performed on 20% axially strained early age cement paste specimen. The analysis results show that the microscopic structures and material characteristics of 20% axially strained cement paste remained same as the unstrained cement paste.

  • PDF

Development of Pre-Mix Cement for 150 MPa Ultra High Strength Concrete (설계강도 150 MPa 초고강도 콘크리트용 시멘트 결합재의 개발)

  • Hwang, Yin-Soong;Kim, Seong-Su;Cha, Wan-Ho;Kwon, O-Bong;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.25-28
    • /
    • 2006
  • This study investigated pre-mixed cement combined with ordinary portland cement, BF and SF, in order to manufacture cement binder, which is possible to produce 150MPa ultra high strength concrete. The BF used in this study reduces and control hydration heat. It can also improve concrete fluidity, while AP increases hydration product and accelerates reaction of BF. SF has micro filler effect and makes pozzolanic reaction. It also fabricates high density internal organization. This developed pre-mixed cement can reduce hydration heat and increase hydration product. It is possible to fabricate high density organization and to secure homogeneity. The mock-up test of ultra high strength concrete showed excellent dispersibility and workability and indicated compressive strength more than 150MPa at 28 days.

  • PDF

An Experimental Study on the Engineering Properties of High- Strength Concrete according to Kinds of Cement (시멘트 종류에 따른 고강도콘크리트의 공학적 특성에 관한 실험적 연구)

  • 김용로;박선규;김규용;김묵한;이승훈;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.126-129
    • /
    • 2000
  • To investigate the influence of kinds of cement on state of high-strength concrete, this study deals with the engineering properties of high-strength concrete used 4 kinds of ordinary portland cement. The result of this study be summarized as follows. 1) It appeared that the change in fluidity with time differ with kinds of cement. 2) The difference of setting time was seen over 3 hours according to kinds of cement. Therefore, it must be examined about used materials when high-strength concrete is manufactured in the construction field.

  • PDF

A Study on the Improvement for Workability of Concrete with Belite Cement (4종(벨라이트)시멘트의유동성 향상에 대한 연구)

  • 하상운;구본창;김동석;하재담;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.247-250
    • /
    • 2000
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and high quality concrete is necessary for them. Nowadays, the proposal of using type IV(belite cement) is investigated to satisfy high flowing, low heat, and ho호 strength. In this study, the flow value and compressive strength of mortar were investigated according to usage of AE high range water reducer. And the slump flow value, falling time and heigth difference of concrete with beilte cement and ordinary cement were examined depending on water cement ratio, sand ratio and unit water weigth, and compressive strength to checked depending on age.

  • PDF

Effects of Re-vibration and Curing Temperature on the Physical Properties of Latex-Modified Concrete (진동가력과 양생온도가 라텍스개질 콘크리트에 미치는 영향)

  • 정원경;홍창우;이주형;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.799-804
    • /
    • 2003
  • The purpose of this study was to investigate the effects of re-vibration and curing temperature onto the physical properties of latex-modified concrete with ordinary cement and rapid-setting cement, and thus to provide a guide line of re-vibration and curing conditions for good quality controls. The main experimental variables included two cement types(ordinary portland cement, rapid-setting cement), curing Temperature($10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$), re-vibration methods(continued, intermittent), and re-vibration times(initial setting, one day after mixing). The experimental results showed that the re-vibration affected little to the mechanical properties of LMC and RSLMC, while, the curing temperature a quite some. The early strength development was the highest at $20^{\circ}C$ curing temperature, and decreased at higher temperature. The permeability of concrete generally decreased with curing time. The rapid chloride permeability was a function of time and temperature. The chloride permeability of RSLMC was so small and negligible.

  • PDF

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

An Experimental Study on the Non-Structural Lean Concrete's Dry Shrinkage with industrial by-product (산업부산물을 활용한 비구조용 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Hwang, Moo Yeon;Yang, Wan Hee;Park, Dong Cheol;Kim, Woo Jea
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.216-217
    • /
    • 2017
  • Slag cement or ternary blended cement is mainly used for non-structural lean concrete for the purpose of foundation work or protection of the waterproof layer on the roof of buildings. However, such non-structural lean concrete has a lot of drying shrinkage cracks, which makes it difficult to maintain the quality of the structure. Therefore, in this study, the compressive strength and the drying shrinkage of ternary blended cement(blended of portland cement, blast furnace slag, fly ash from combined heat and power Plant) for non-structural lean concrete were examined. As a result, it was confirmed that this non-structural lean concrete reduced drying shrinkage compared to the conventional ternary blended cement using fly ash from power plant.

  • PDF

Recovering Hydration Performance of Cementitious Powder by Concret Waste according to Burning Temperature (폐콘크리트계 미분말의 소성조건에따른 수화성 회복)

  • 강태훈;정민수;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.81-87
    • /
    • 2003
  • The purpose of this study is the development of a recycling process to recover the hydrated ability of cement hydrate which accounts for a large proportion of cementitious powder by concrete waste in order to recycle cementitious powder by concrete waste as recycle cement. Therefore, after having theoretical consideration based on the properties of high-heated concrete, we consider the properties of hydration of cementitious powder in hardened mortar under various temperature conditions. As a result of experiment, it is revealed that an effective development of recycling cement is possible since the cementitious powder by concrete waste recovers a hydraulic property during burning at $600^{\circ}C$ or $700^{\circ}C$. And it is shown that the fluidity of mortar decreases rapidly as the burning temperature of recycle cement increases. however, the improved effect of fluidity is predominant if adding the additive such as fly-ash or blast furnace slag.

  • PDF

A Study on the Flexural Behavior of Concrete Using Non-burnt Cement (비소성 시멘트 콘크리트의 휨 거동에 관한 연구)

  • Yoo, S.W.;Nam, E.Y.;Lee, S.J.;Hwang, S.B.;Soh, Y.S.;Kim, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime instead of clinker, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. By this reason, in this study, mechanical behavior tests of non-burnt cement concrete were performed, and elasticity modulus and stress-strain relationship of non-burnt cement concrete were proposed. 6 test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. By the test results, there was no difference between ordinary concrete and non-burnt cement concrete of flexural behavior. In order to verify the proposed non-burnt cement concrete model, nonlinear analytical model was derived by using strain compatibility method. By the results of comparison between test results, ordinary concrete model and proposed model, The proposed model well predicted the flexural behavior of non-burnt cement concrete.