• Title/Summary/Keyword: Cement Zero

Search Result 59, Processing Time 0.037 seconds

Manufacturing Zero-Cement Bricks by Replacing Cement with Recycled Aggregates and Blast Furnace Slag Powder

  • Park, Kyung-Taek;Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, a zero-cement brick is manufactured by replacing cement with recycled aggregates and blast furnace slag powder. Experimental tests were conducted with standard sized samples of $190{\times}57{\times}90mm$ (KS F 4004), and this manufacturing technique was simulated in practice. Results showed that the zero-cement brick with 0.35 W/B had the highest compressive strength, but the lowest absorption ratio. This absorption ratio of zero-cement brick with 0.35 W/B was lower than the required level determined by KS F 4004. Hence, to increase the absorption ratio, crushed fine aggregate (CA) and emulsified waste vegetable oil (EWO) were used in combination in the zero-cement brick. It was found that the zero-cement brick with CA of 20% and EWO of 1% had the optimum combination, in terms of having the optimum strength development (12 MPa) and the optimum absorption ratio (8.4%) that satisfies the level required by KS. In addition, it is demonstrated that for the manufacturing of zero-cement brick of 1000, this technique reduces the manufacturing cost by 5% compared with conventional cement brick.

The Effect on the Kind of Alkali-Activator of Cement ZERO Mortar (알칼리 활성화제 종류가 시멘트 ZERO 모르타르에 미치는 영향)

  • Ryu, Gum-Sung;Kang, Hyun-Jin;Ko, Kyung-Taek;Kang, Su-Tae;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.397-398
    • /
    • 2009
  • Recently, the research about alkaline activity concrete is being progressed actively. In this paper, the effect of many kinds of alkaline activation to fly ash based cement zero mortar is examined.

  • PDF

The Strength Characteristics of Cement ZERO Mortar Mixing Waste Glass Powder and Fly Ash as Binder (플라이애시와 폐유리 미분말을 혼합한 시멘트 ZERO 모르타르의 강도특성)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Park, Jung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.649-652
    • /
    • 2008
  • Glass is often recycled. In order to recycle, glass is crushed and ground. During this process, glass powder is generated. Most of this scrap glass powder is disposed in landfills. The glass powder, consisting of 73% SiO$_2$ and 16% Al$_2$O$_3$, is richer in components necessary for polymerization than fly ash. In this study, the fluidity and compressive strength of cement zero mortar were investigated, where cement zero mortar was prepared by mixing 5$\sim$15% of glass powder with 100% fly ash mortar. Result of flow test concluded that workability was not affected by adding the powder. After aging for 28 days, the compressive strength increased by approximately 6% with 5% addition of scrap glass powder. With 10% addition, the strength remained the same. In case of 15% addition, the compressive strength decreased by approximately 6%. To summarize the results, 5$\sim$10% addition of scrap glass powder is considered to be most appropriate.

  • PDF

Influence of Curing Temperature on the Strength Properties of Fly Ash Based Cement ZERO Mortar (양생온도가 플라이애시 기반 시멘트 ZERO 모르타르의 강도에 미치는 영향)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.665-668
    • /
    • 2008
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution($\sim$7% of total of CO$_2$ emissions). Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Therefore, In this study, influence of curing temperature(30, 60, 90$^{\circ}$C) on the strength of properties fly ash based cement ZERO mortar was investigate, measured a weight change and pH change according to each care of curing temperature. The test results that a curing at 90$^{\circ}$C is appropriate in case of the high strength concrete is required in the early-age of the curing and 60$^{\circ}$C is efficient for the case of requiring high strength at age 28 days. Furthermore pH variation and value of compressive strength are judged to correlate but change of weight is not the case.

  • PDF

Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 철근 콘크리트 보의 휨거동 평가)

  • Lee, Kwang-Myong;Seo, Jung-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2015
  • Cement zero concrete produced by alkali-activators and industrial by-products such as slag instead of cement, enables to solve the environmental pollution problems provoked by the exhaustion of natural resources and energy as well as the discharge of carbon dioxide. However, researches on the cement zero concrete are still limited to material studies and thus, study on the structural behavior of relevant members is essential to use the cement zero concrete as structural materials. This paper aims to evaluate experimentally and analytically the flexural behavior of RC beams using 50 MPa alkali activated slag concrete. To achieve such a goal, flexural tests on three types of RC beam specimens were conducted. A nonlinear analysis model is proposed using the modulus of elasticity and stress-strain relationship of alkali activated slag concrete. The analysis results obtained by the proposed model agree well with the experimental results, which could verify the validity of the proposed model.

Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil (경량기포혼합토의 축변형율 - 체적변형율 관계)

  • 김주철;김병탁;윤길림;서인식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

Fundamental Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum (무수석고와 소각장애시의 치환율 변화에 따른 고로슬래그 미분말 활용 무 시멘트 모르타르의 기초적특성)

  • Lu, Liang Liang;Kim, Jun Ho;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.242-243
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar. The replacement ratio of anhydrite gypsum was fixed as 0, 10%, 20% the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 20% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

Engineering Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum (석고종류 및 소각장애시 치환율 변화에 따른 고로슬래그 미분말 활용 무시멘트 모르타르의 공학적 특성)

  • Park, Jun Hui;Huang, Jin Guang;Kim, Jun Ho;Jo, Man Ki;Han, Min cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.222-223
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar.The replacement ratio of dihydrate gypsum and anhydrite gypsum was fixed as 0 and 10%, the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 10% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF