DOI QR코드

DOI QR Code

Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete

알칼리 활성 슬래그 콘크리트를 사용한 철근 콘크리트 보의 휨거동 평가

  • Lee, Kwang-Myong (Department of Civil and Environmental System Engineering, Sungkyunkwan University) ;
  • Seo, Jung-In (Department of Civil and Environmental Engineering, Woosuk University)
  • 이광명 (성균관대학교 건설환경시스템공학과) ;
  • 서정인 (우석대학교 토목환경공학과)
  • Received : 2015.03.09
  • Accepted : 2015.04.07
  • Published : 2015.06.30

Abstract

Cement zero concrete produced by alkali-activators and industrial by-products such as slag instead of cement, enables to solve the environmental pollution problems provoked by the exhaustion of natural resources and energy as well as the discharge of carbon dioxide. However, researches on the cement zero concrete are still limited to material studies and thus, study on the structural behavior of relevant members is essential to use the cement zero concrete as structural materials. This paper aims to evaluate experimentally and analytically the flexural behavior of RC beams using 50 MPa alkali activated slag concrete. To achieve such a goal, flexural tests on three types of RC beam specimens were conducted. A nonlinear analysis model is proposed using the modulus of elasticity and stress-strain relationship of alkali activated slag concrete. The analysis results obtained by the proposed model agree well with the experimental results, which could verify the validity of the proposed model.

시멘트를 전혀 사용하지 않고 슬래그와 같은 산업 부산물과 알칼리 활성화제를 사용하여 콘크리트를 제조하면 천연자원 및 에너지 고갈 문제와 이산화탄소 배출에 의한 환경오염을 해결할 수 있을 것으로 판단된다. 현재까지 알칼리 활성화제를 사용한 무시멘트 콘크리트의 연구는 주로 재료적인 분야에 대해서만 수행되어지고 있는 실정이다. 그러나 무시멘트 콘크리트를 구조재료로 사용하기 위해서는 구조 부재 거동 등에 대한 연구가 필수적이다. 본 논문에서는 50 MPa급 알칼리 활성 슬래그 콘크리트를 사용한 철근콘크리트 보부 재 3개를 제작하여 휨실험을 수행하였다. 실험결과를 검증하기 위하여 알칼리 활성 슬래그 콘크리트의 탄성계수와 응력-변형률 관계를 이용한 비선형 해석 모델을 제안하였으며, 제안된 해석 모델을 이용하여 해석을 수행한 결과, 해석결과와 실험결과가 비교적 잘 일치하여 제안된 해석 모델은 적절한 것으로 판단된다.

Keywords

References

  1. Wang, S. D., Pu, X. C., Scrivener, K. L., and Pratt, P. L., "Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems", Advances in Cement Research, Vol.27, 1995, pp. 93-102.
  2. Shi, C. and Day, R. L., "Comparison of Different Methods for Enhancing Reactivity of Pozzolans", Cement and Concrete Research, Vol.31, No.5, 2001, pp. 813-818. https://doi.org/10.1016/S0008-8846(01)00481-1
  3. Yang, K. H., Song, J. K., and Choi, D. W., "$CO_2$ Assessment of Alkali-Activated Concrete Based on Korean LCI Database", Magazine of the Korea Concrete Institute, Vol.23, No.6, 2011, pp. 36-39. https://doi.org/10.22636/MKCI.2011.23.6.36
  4. Collins, F. G. and Sanjayan, J. G., "Workability and Mechanical Properties of Alkali Activated Slag Concrete", Cement and Concrete Research, Vol.29, No.3, 1999, pp. 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
  5. Sofi, M., Van Deventer, J. S. J., Mendis, P. A., and Lukey, G. C., "Engineering Properties of Inorganic Polymer Concrete (IPCs)", Cement and Concrete Research, Vol.37, No.2, 2007, pp. 251-257. https://doi.org/10.1016/j.cemconres.2006.10.008
  6. Duxson, P., Fernandez-Jimenez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S. J., "Geopolymer Technology: The Current State of the Art", Journal of Materials Science, Vol.42, 2007, pp. 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  7. Kim, T. W., "The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator", Journal of the Korea Concrete Institute, Vol.24, No.6, 2012, pp. 745-752. https://doi.org/10.4334/JKCI.2012.24.6.745
  8. Yang, K. H. and Seo, E. A., "Evaluation of Shrinkage Strain of Alkali-Activated Slag Concrete", Journal of the Korea Concrete Institute, Vol.25 No.6, 2013, pp. 593-599.
  9. Oh, S. H., Hong, S. H., and Lee, K. M., "Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar", Journal of the Korean Recycled Construction Resources Institute, Vol.2, No.1, 2014, pp. 60-65. https://doi.org/10.14190/JRCR.2014.2.1.060
  10. Song, K. I., Lee, B. Y., Hong, G. H., Gong, M. H., and Song, J. K., "Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar", Journal of the Korea Concrete Institute, Vol.24 No.5, 2012, pp. 577-584. https://doi.org/10.4334/JKCI.2012.24.5.577
  11. Yang, K. H., Development of a Mix Design and Standards for Eco-Friendly Green Concrete Using Cementless Alkali- Activated Binders, Technical Report, Department of Architectural Engineering, Kyonggi University, Suwon, Kyonggi-do, Korea, 2011, 106 pp.
  12. Nielsen, M. P., Limit Analysis and Concrete Plasticity, Prentice Hall, Upper Saddle River, NJ, 1984, 936 pp.
  13. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.
  14. Hognestad, E., A Study of Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin 399, University of Illinois Engineering Experiment Station, Urbana, IL, 1951, 128 pp.
  15. Yang I. H., "An experimental study on flexural behavior of steel fiber reinforced ultra high performance concrete", Journal of Korean Concrete Institute Structural, Vol.21, No.6, 2009, pp. 737-744. https://doi.org/10.4334/JKCI.2009.21.6.737
  16. Shin, S. W., Ghosh, S. K., and Moreno, J., "Flexural ductility of ultra high strength concrete members", American Concrete Institute Structural Journal, Vol.86, No.4, 1989, pp. 394-400.

Cited by

  1. Flexural and Shear Behaviors of Reinforced Alkali-Activated Slag Concrete Beams vol.2017, pp.1687-8442, 2017, https://doi.org/10.1155/2017/5294290