• 제목/요약/키워드: Cement Replacement

Search Result 789, Processing Time 0.025 seconds

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Song, Min-Seob;Jang, Jea-Bong;Kim, Gab-Su;Yoon, Jong-Kee;Kim, Jae-Hwan;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 송민섭;장재봉;김갑수;윤종기;김재환;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical of efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates (결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향)

  • Feng, Hai-Dong;Park, Kyung-Taek;Baek, Dae-Hyun;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

Effect of Partial Replacement with Cement and Recycled Fine Aggregate on Properties of Blast Furance Slag-Based Mortar (고로슬래그 미분말 모르터에 시멘트 및 순환잔골재 치환율 변화에 따른 품질특성)

  • Kim, Young-Hee;Feng, Hai-Dong;Son, Ho-Jeong;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.215-216
    • /
    • 2011
  • This study investigates the effect of partial replacement with cement on the properties of blast furnace slag-based mortar. Recycled fine aggregate with various contents was used to activate the hydration of blast furnace slag in the mortar and compared its effect on strength development. Results showed that increasing cement and recycled fine aggregate increased the strength of mortar specimens. However, this study found that the mortar made with partial replacement of river sand with recycled fine aggregate of 20% developed a similar strength to the strength that cement with 10% can achieved.

  • PDF

Application of zeolite/kaolin combination for replacement of partial cement clinker to manufacture environmentally sustainable cement in Oman

  • Abdul-Wahab, Sabah A.;Hassan, Edris M.;Al-Jabri, Khalifa S.;Yetilmezsoy, Kaan
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • This study was conducted to explore the optimum proportion of zeolite and zeolite-kaolin as additives to cement clinker and gypsum samples, while maintaining the strength properties of produced environmentally sustainable cements. According to the British standard method, zeolite was added to cement clinker in proportions of 5-12% and 10-12% by weight, respectively, in the preparation of samples of zeolite-containing cement and zeolite-kaolin-based cement. Kaolin was used as a second additive as 10-20% of the total weight. The compressive strength tests were performed on base cement samples according to a standard procedure given in ASTM C109 Compressive Strength of Hydraulic Cement. These values were compared with those of the reference sample and the Omani allowable limits. The results indicated that the best compressive strength values were obtained with 88% cement clinker, 5% gypsum, and 7% zeolite for the zeolite-containing cement. Quantities of 70% cement clinker, 5% gypsum, 10% zeolite, and 15% kaolin gave the best results for zeolite-kaolin-based cement, resulting in a substitution of than 25% cement clinker. The study concluded that the partial cement clinker replacement using zeolite/kaolin combination may have a great influence on the reduction of $CO_2$ emission and energy saving in cement manufacturing.

Contribution of local materials and the recycling of slate in the constitution of hydraulic concrete pavements

  • Tedjeddine Bendisari;Lynda A. Chaabane;Feriel Tires;Assma L. Mazouzi;Wissam Y. Bouayed;Abderrahman Lalimi;Kadid Moufek
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.287-308
    • /
    • 2023
  • The main objective of this article is to highlight the progress made in the development of new materials that have been gradually used by humans until today. Of course, this progress must be associated with other parameters in order to guarantee sustainable development. For this, today, it has become urgent to reduce the consumption of cement by resorting to its partial or total replacement by other similar materials in order to reduce CO2 emissions in our environment. This should certainly help to develop greener building materials. In this study, it was decided to proceed with the partial or total replacement of Portland cement type CEM II/B-L-42.5N by slate and lime that had not undergone any previous transformation. The results obtained revealed that the mortar whose substitution compared to the replacement of cement (100%) cement and sand (0/4) confers better kinetics than those of the series composed of(100%) cement and fraction rubble (0/1).

Influence of Chemical Activators on Cement-Fly ash Paste and Strength Development of Concrete

  • Song, Jong-Taek;Yun, Sung-Dae;Kim, Jae-Young;Lee, Chin-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The effects of replacement level, curing method and chemical admixtures were investigated in the cement-fly ash paste. The strength of cement-fly ash paste is lower than that of controlled cement paste only and the differences increase with replacement level. However, in steam curing, strength of cement-fly ash pastes is improved, especially, at early ages. In order to improve early strength, the use of $Na_2SO_4$in cement-fly ash paste increases the quality of concrete. In addition, improvement of strength of concrete including 30% of fly ash can be obtained and achieves the highest strength compared to other concrete mixtures.

  • PDF

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

The Experimental Study on High Strength Concrete of High Volume Fly-Ash (플라이애쉬를 대량 사용한 고강도 콘크리트에 관한 실험적 연구)

  • 이동하;서동훈;전판근;백민수;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.275-280
    • /
    • 2002
  • To study of high volume fly -ash concrete replace cement and fine aggregate together. Proportion consideration economy cost and performance improve replacement high volume fly-ash. Experimentation study of high-strength which cement about fly-ash replacement maximum 50%Flash concrete tested slump, air contest, setting and Hardening concrete tested day of age 1, 3, 7, 28, 91 compression strength in underwater curing. Purpose of study is consultation materials in field that variety of fly ash replacement concrete mix proportion comparison and valuation.

  • PDF