DOI QR코드

DOI QR Code

Contribution of local materials and the recycling of slate in the constitution of hydraulic concrete pavements

  • Tedjeddine Bendisari (Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University) ;
  • Lynda A. Chaabane (Physical-Chemistry of Advanced Materials Laboratory (LPCMA), Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University) ;
  • Feriel Tires (Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University) ;
  • Assma L. Mazouzi (Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University) ;
  • Wissam Y. Bouayed (Department of Architecture and Urban Planning, Oran University) ;
  • Abderrahman Lalimi (Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University) ;
  • Kadid Moufek (Department of Civil Engineering and Public Works Faculty of Technology, Djillali Liabes University)
  • Received : 2022.03.22
  • Accepted : 2023.05.17
  • Published : 2023.12.25

Abstract

The main objective of this article is to highlight the progress made in the development of new materials that have been gradually used by humans until today. Of course, this progress must be associated with other parameters in order to guarantee sustainable development. For this, today, it has become urgent to reduce the consumption of cement by resorting to its partial or total replacement by other similar materials in order to reduce CO2 emissions in our environment. This should certainly help to develop greener building materials. In this study, it was decided to proceed with the partial or total replacement of Portland cement type CEM II/B-L-42.5N by slate and lime that had not undergone any previous transformation. The results obtained revealed that the mortar whose substitution compared to the replacement of cement (100%) cement and sand (0/4) confers better kinetics than those of the series composed of(100%) cement and fraction rubble (0/1).

Keywords

Acknowledgement

The authors of the article warmly thank all the staff of the civil engineering department of Sidi Bel Abbés, the BTPH laboratory for the precious help provided for the realization of this work carried out during this pandemic.

References

  1. Abu-Eishah, S.I., El-Dieb, A.S. and Bedir, M.S. (2012), "Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region", Constr. Build. Mater., 34, 249-256. https://doi.org/10.1016/j.conbuildmat.2012.02.012.
  2. Akcxaouglu, T., Tokyay, M. and Cxelik, T. (2004), "Effect of coarse aggregate size and matrix quality on ITZ and Failure behaviorof concrete under uniaxial compression", Cement Concretes Compos., 26(6), 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1.
  3. Al-alaily, H.S. and Hassan, A.A. (2016), "Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin", Constr. Build. Mater., 114, 564-579. https://doi.org/10.1016/j.conbuildmat.2016.03.187.
  4. Alipour, P., Namnevis, M., Tahmouresi, B., Ehsan, M. and Tang, W. (2019), "Assessment of flowing ability of self-compacting mortars containing recycled glass powder", Adv. Concrete Constr., 8(1), 65-76. https://doi.org/10.12989/acc.2019.8.1.065.
  5. Baradan, B. (2002), Durability of Reinforced Concrete Structures, Dokuz Eylul University Engineering Faculty Press, Izmir, Turquie.
  6. Bresson, A. (2006), "Influence de la mineralogie sur le comportement des mortiers de ciment au jeune age", Faculte Science et de Genie, Universite Laval, Quebec.
  7. Celikten, S. and Isikdag, B. (2020), "Strength development of ground perlite-based geopolymer mortars", Adv. Concrete Constr., 9(3), 227-234. https://doi.org/10.12989/acc.2020.9.3.227.
  8. Chunlin, L., Kunpeng, Z. and Depeng, C. (2011), "Possibility of concrete prepared with steel slag as fine and coarse aggregates", International Conference on Advances in Engineering.
  9. Ciment-Partie, 1. (2012), Specifications et Criteres de Conformite des Ciments Courants, Avril.
  10. Divet, L. (2002), "Comment se premunir des reactions sulfatiques dans les betons? Point sur les normes actuelles et quelques recommandations, Laboratoire Central des Ponts et Chaussees", Bulletin des Laboratoires des Ponts et Chaussees, 240, REF. 4447, 87-94.
  11. Erdogan, T.Y. (2002), Materials of Construction, Metu Press, Ankara.
  12. Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.
  13. Irshidat, M.R., Al-Nuaimia, N. and Rabieb, M. (2021), "Microstructure and mechanical behavior of cementitious composites with multi-scale additives", Adv. Concrete Constr., 11(2), 163-171. https://doi.org/10.12989/acc.2021.11.2.163.
  14. Jianyong, L. and Yan, Y. (2001), "A study on creep and drying shrinkage of high performance concrete", Cement Concrete, Res., 31(8), 1203-1206. https://doi.org/10.1016/S0008-8846(01)00539-7.
  15. Khanzadi, M. and Behnood, A. (2009), "Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate", Constr. Build. Mater., 23(6), 2183-2188. https://doi.org/10.1016/j.conbuildmat.2008.12.005.
  16. Liu, C., Zha, K. and Chen, D. (2011), "Possibility of concrete prepared with steel slag as fine and coarse aggregates: A preliminary study", Procedia Eng., 24, 412-416. https://doi.org/10.1016/j.proeng.2011.11.2667.
  17. Luxan, M.P., Sotolongo, R., Dorrego, F. and Herrero, E. (2000), "Characteristics of the slags produced in the fusion scrap steel bu electric arc furnace", Cement Concrete Res., 30(4), 517-519. https://doi.org/10.1016/S0008-8846(99)00253-7.
  18. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. https://doi.org/10.12989/amr.2019.8.2.137.
  19. Mazloom, M., Homayooni, S.M. and Miri, S.M. (2018), "Effect of rock flour type on rheology and strength of self-compacting lightweight concrete", Comput. Concrete, 21(2), 199-207. https://doi.org/10.12989/cac.2018.21.2.199.
  20. Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9.
  21. Mehta, P.K. (1989), "Pozzolanic and cementitious by-produts in concrete", Proceedings of the 3th CANMET/ACI, International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Trondheim, Norway.
  22. Mehta, P.K. (1997), Durability Critical Issues for the Future, Concrete International.
  23. Mehta, P.K. (1999), "Concrete technology for sustainable development-an overview of essential properties", Concrete for Sustainable Development in the Twenty-first Century, Routledge, London, 83-94.
  24. Mehta, P.K. and Monterio, P.J.M. (1986), Concrete Structure, Properties and Materials, Prentice-Hall, Englewood Cliffs, N.J.
  25. Muhmood, L., Vitta, S. and Venkateswaran, D. (2009), "Cementitious and pozzolanic behavior of electric arc furnace steel slags", Cement Concrete Res., 39, 102-109. https://doi.org/10.1016/j.cemconres.2008.11.002.
  26. Muraz, L. (2015), "Valorisation de scories cristallins dans le beton de ciment", Memoire de Maitrise, Specialite Genie Civil, Sherbrooke, Quebec, Canada.
  27. NA 442-2013 (2013), Liants Hydrauliques, Ciments Courants, Composition, Specification et Criteres de Conformite, IANOR, Alger.
  28. NF EN 12350-5 (IDC P 18-432) (1999), Essai Pour Beton Frais-Partie 5: Essai d'Etalement a la Table a Chocs, Decembre.
  29. NF EN 13369 (2001), Regles Communes Pour les Produits Prefabriques en Beton, Afnor, Octobre.
  30. Pellegrino, C. and Gaddo, V. (2009), "Mechanical and durability characteristics of concrete containing EAF slag as aggregate", Cement Concrete Compos., 31(9), 663-671. https://doi.org/10.1016/j.cemconcomp.2009.05.006.
  31. Pellegrino, C., Cavagnis, P., Faleschini, F. and Brunelli, K. (2013), "Properties of concretes with Black/Oxidizing Electric Arc Furnace slag aggregate", Cement Concrete Compos., 37(1), 232-240. https://doi.org/10.1016/j.cemconcomp.2012.09.001.
  32. Rojas, F.M., Sanchez De Rojas, M.I. and Uria, A. (2002), "Study of the instability of black slags from electric arc furnace steel industry", Mater. Constr., 52, 79-83. https://doi.org/10.3989/mc.
  33. Saha, S., Rajasekaran, C. and Gupta, P. (2020). "Performance of eco-friendly mortar mixes against aggressive environments", Adv. Concrete Constr., 10(3), 237-245. https://doi.org/10.12989/acc.2020.10.3.237.
  34. Sairam, V., Shanmugapriya, T., Jain, C., Agrahari, H.K. and Malpani, T. (2021). "Experimental study of graphene oxide on wollastonite induced cement mortar", Adv. Concrete Constr., 12(6), 479. https://doi.org/10.12989/acc.2021.12.6.479.
  35. Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and silica", Constr. Build. Mater., 222, 622-632. https://doi.org/10.1680/jmacr.17.00418.
  36. Swenson, E.G. (1974), Le Beton en Milieux Sulfates, NRC Publications Archive Archives des publications du CNRC.
  37. Tarn, V.W.Y., Gao, X.F., Tarn, C.M. and Chan, C.H. (2008), "New approach in measuring water absorption of recycled aggregates", Constr. Build. Mater., 22(3), 364-369. https://doi.org/10.1016/j.conbuildmat.2006.08.009.