• Title/Summary/Keyword: Cellulose Paper

Search Result 429, Processing Time 0.022 seconds

Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(VI) -Characteristics of Cellulase and Xylanase from Fusarium pallidoroseum and Aspergillus niger- (고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제6보) -Fusarium pallidoroseum과 Aspergillus niger에서 단리한 Cellulase와 Xylanase의 특성-)

  • Park Seong-Cheol;Lee Yang-Soo;Jeong In-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.1-7
    • /
    • 2005
  • This study was carried out to investigate the characteristics of extracellular cellulase and xylanase from Fusarium pallidoroseum and Aspergillus niger, such as enzyme activity and stability by various pH, temperature and metal ions, for application into enzymatic deinking system. The optimal temperature and pH for enzyme activity and stability of Fusarium pallidoroseum and Aspergillus niger were $50^{\circ}C$, pH 5.0 and $60^{\circ}C$, pH 9.0, respectively. Certain metal ions, calcium and cobalt, brought to elevate cellulase and xylanase activity from F. pallidoroseum and A. niger. With these results we suggest that enzymatic deinking system should be proceed at $50\~60^{\circ}C$ under their optimal pH condition.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

KINETICS OF POLYELECTROLYTE ADSORPTION ON CELLULOSIC FIBRES

  • Lars Wagberg;Sjolund, Anna-Karin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.34-42
    • /
    • 1999
  • The present investigation has focused up on the study of the adsorption of three different molecular mass fractions of a polyDiMethylDiAllylAmmoniumChloride (DMDAAC) (8750(LM\ulcorner), 48000(MM\ulcorner) and 1200000(HM\ulcorner)) on bleached chemical fibres. Both kinetics of adsorption and equilibrium adsorption measurements have been conducted and each adsorption has been measured by polyelectrolyte titration. The results show that the LM\ulcorner polymer can reach all of the charges in the fibre wall whereas the MM\ulcorner and HM\ulcorner can only reach the external surfaces of the fibres. It is also shown that the kinetics of adsorption of the LMw polymer is not at all affected by the presence of a saturated layer of HMw polymer on the surface of the fibres. Finally, the results from the investigation show that it is possible to have full coverage of the external surface of the fibres by a high molecular mass polymer and a full coverage of the internal surface of the fibres with a low molecular mass polymer. This is true if the high molecular masspolymer is added first followed by addition of the low molecular masspolymer.

Fractionnement des produits de $r{\acute{e}}action$ de Maillard par $diff{\acute{e}}rentes$ techniques et observation $d'activit{\acute{e}}$ fermentaire do ces fractions -II. Fractionnement par chromatographie de partage- (여러가지 방법(方法)에 의(依)한 Premelanoidin의 분획(分劃)과 그 분획물(分劃物)의 발효활성(醱酵活性)에 관(關)한 관찰(觀察) -II. 분배(分配)크로마토고라피에 의(依)한 분획(分劃)-)

  • Lee, Yang-Hee;Petit, Leon;Fittes, Eliane
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.101-104
    • /
    • 1969
  • Partition chromatography의 방법(方法)으로는 우선 cellulose powder colume을 시도해 보았으나 이는 얻어진 fraction의 용매제거의 난점(難點)이 있으므로 결국(結局) paper chromatography 방법(方法)만을 사용(使用)하였다. 연구결과(硏究結果)로는 우선 갈색색소의 fraction에 있어서 발효초기(醱酵初期)에 약간의 활성(活性)을 관찰(觀察)할수 있었으며 glycine이 함유된 fraction 에서는 발효초기에 벌써 상당한 활성을 보였으며 이는 또한 발효의 진행(進行)에 따라 점차 증가되었다. 그리고 N-glycoside의 fraction에서는 발효초기에 미약(微弱)한 활성(活性)을 관찰할 수 있었다. 그러나 paper chromatography의 방법(方法)은 본실험(本實驗)에 적합하지 않다고 생각되며 그 이유(理由)는 일회(一回)에 fractionation 할수있는 시료(試料)의 양(量)이 극(極)히 제한되어 있다는 점(點)과 또 fractionation 도중에 타물질(他物質)의 오염으로 인(因)해서 시료(試料)의 정확(正確)한 발효 활성(活性)을 측정(測定)할수 없다는 것이다.

  • PDF

Use of Red Algae Fiber as Reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

Hygrothermal Performance Improvement Plan of Standard Model for Rural Housing and Wooden Housing (농촌주택 및 목조주택 표준모델 구조체의 습·열 환경 성능 개선 방안)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • The purpose of this study was to investigate whether the standard models for rural housing and wooden housing model have performance for hygrothermal and to propose a way of improvement relevant to hygrothermal performance for those models. All of the models to be analyzed were found to have some parts that were absent of stability in terms of performance for hygrothermal. In the process of analyzing the causes and proposing improvement measures, the following conclusions were derived. Fist, The exterior surface of the structure should be composed of a structure with good moisture permeability, and for the interior surface, a variable vapor retarder paper should be applied in consideration of the reverse condensation phenomenon in summer. Second, in terms of performance for hygrothermal, applications of external insulation plaster finish to the exterior wall or of ventilation method using a rafter vent on the roof should be avoided. Third, a rain screen method with a ventilation layer should be applied to the exterior wall, and a method of constructing ventilation layer separated from the insulation layer with a vapor retarder paper should be applied to the roof. Fourth, the application of insulation materials having capillary action, such as wood fiber insulation board or cellulose insulation board, contributes to more stable performance for hygrothermal.

Studies on the Characterization of Cellulase Produced by Trichoderma viride QM 9414 (Trichoderma viride QM 9414가 생산하는 Cellulase 특성에 관한 연구)

  • 윤은숙;이혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.1
    • /
    • pp.57-68
    • /
    • 1990
  • In order to obtain the fundamental informations on cellulase of Trichoderma viride QM 9414 for its production and utilization, some physico-chemical properties of the enzyme were reviewed. When T. viride QM 9414 was cultured on wheat bran medium, filter paper-disintegrating and carboxymethyl cellulose-saccharifying activity were increased with the cell growth, and thereafter CMC-saccharifying activity was kept on almost the same leved while filter-paper disintegrating activity was decreased sharply. And B-glucosidase was formed maximally on the late stationary phase of growth. The crude cellulase of cell-free extracts was purified by (NH4)2SO4 fractionation, Sephadex-G 200 column chromatography and DEAE Sephadex A-50 column chromatography. Filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity were purified 10-fold, 47-fold and 38-fold, respectively. The crude enzyme was proved to be a complex of three different enzyme proteins which were showing filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity. The optimal pH of the three enzyme components was alike pH 4.0, and the optimal temperature for CMC-saccharifying, filter paper-disintegrating and B-glucosidase activity were 4$0^{\circ}C$, 45$^{\circ}C$ and 5$0^{\circ}C$ respectively. The Km and Vmax values of CMC saccharifying activity for CMC were 0.485% and 3.10, and the Km and Vmax vallues of B-glucosidase for PNPG were 0.944$\times$10-3M and 0.097, respectively. The Km and Vmax values of filter paper-disintegrating activity for Avicel were determined to be 0.09% and 0.178, respectively. B-Glucosidase activity was competitively inhibited by glucose, and the Ki value for this enzyme was 3.54$\times$10-3M, CMC saccharifying activity was found to be greatly inhibited by cellobiose.

  • PDF

Effect of the paper acidity on the cellulolytic activity of fungi (종이의 산성화가 미생물의 분해능에 미치는 영향)

  • Han, Sung-Hee;Lee, Kyu-Shik;Chung, Young-Jae;Lee, Hye-Yun
    • 보존과학연구
    • /
    • s.19
    • /
    • pp.3-22
    • /
    • 1998
  • The effect of pH on degradation of paper by some fungi, which able to degrade cellulose, was investigated. Trichoderma koningii, Aspergillus nigerand Penicillium nigulosum were cultured at $28^{\circ}C$ for 16 days in the selective medium (PH3, PH4, PH5, PH6, PH7, PH8, PH9, PH10, PHC) containing paper as substrate. Each paper was pretreated with each pH buffer (pH 3∼pH 10, D.W.)prior to addition to the selective medium. Enzyme activities in the each culture medium were measured spectroph to metrically using C.M.C., Avicel, PNPG as the substrates for endoglucanase, exoglucanase and $\beta$-glucosidase, respectively. In all experimental fungi, the enzyme activities of PH3 and PH9 medium were usually much higher than those of other experimental groups. However in the PH6medium, enzyme activity was lower than other groups. To analyze the concentration and pattern of protein in the each culture medium, the medium was concentrated by lyophilization. The protein concentration of PH3 and PH9 medium were relatively high (T.koningii; 6.31mg, 6,19mg, A.niger; 1.62mg, 1.96mg, P.nigulosum;2.50mg, 2.73mg, respectively), but that of PH6 was relatively low. The protein pattern of each medium was analyzed by using SDS-PAGE and VDS Image Master Analysis Program. The concentrations of bands in the each lane were usually high at lane2 (PH3) and lane8 (PH9) and low at lane5 (PH6). Therefore, the incresed cellulolytic activity of fungus against acidified paper could be result of structural change and deterioration of paper caused by being acidified.

  • PDF

Study on Characteristics and Manufacture of Heat-Resisting Diatomite Protection Tube for Probe Used in Steelmaking Process (용융금속 프로브용 규조토 내열보호관의 제조 및 특성연구)

  • Lee, Man-Eob;Chung, Hak-Jae;Lee, Kyo-Woon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.260-268
    • /
    • 2005
  • A heat-resisting diatomite protection tube, using diatomite as a main component, was manufactured through an extrusion molding of ceramic slurry in different component ratios. And its mechanical strength, carbon analysis and microstructural non-homogeneity were investigated. After fixing $60wt\%$ of porous diatomite whose particle size was $50\~100\;{\mu}m$, the optimum mixture ratio with composition variables by changing $1\;wt\%$ of each component that was silica sol$(4.3\~7.3\;wt\%)$ as an inorganic binder, CMC (Sodium CarboxyMethyl Cellulose $(6\~9\;wt\%)$) as an organic binder and paper powder$(4.7\~7.7\;wt\%)$ was obtained. As a result of the investigation on a composition containing $60\;wt\%$ diatomite, $5.3\;wt\%$ silica sol, and $7\;wt\%$ CMC, a heat-resisting protection tube that could be used as a molten steel probe for measuring the temperature and components of molten steel was developed. The bending strength, compressive strength, and elastic modulus of the protection tube developed, that contained $\le2.3\;wt\%$ carbon, were 7.1 MPa, 7.5 MPa, and 1090 MPa, respectively.

Effect of Cationic Starch and MFC Addition on the Flocculation Behaviour of GCC (양이온성 전분과 MFC 투입이 GCC의 응집거동에 미치는 영향)

  • Yong, Seong Moon;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.82-92
    • /
    • 2016
  • The reduction of carbon dioxide emission is hot issue in the world because we are confronted with serious global warming and climate change. As a part of carbon dioxide reduction efforts, various approaches for increasing filler loading have been carried out in order to decrease the energy consumption in papermaking processes. Effects of the pretreatment of GCC with cationic starch and MFC on the flocculation behaviour of GCC were investigated in this study. Pretreatment of GCC with cationic starch caused the change of electric charge of suspension and flocculation behaviour of GCC. Largest flocculation size was obtained near the isoelectric point in the case of cationic starch treatment. When MFC (30 times grinded) was added after preflocculation of GCC with cationic starch, the flocculation size was increased, but largest flocculation size was obtained at -150 mV of electric charge of suspension in this study. However the addition of highly grinded MFC (60 times grinded) caused smaller flocculation size of GCC than those of MFC (30 times grinded). When GCC and MFC were mixed first, and then cationic starch was added, the characteristics of MFC and the change of electric charge which could be brought by cationic starch did not affect the flocculation size of GCC at all. The flocculation size obtained by the combination of cationic starch and MFC was smaller than those of cationic starch. These results show that flocculation behaviour could be controlled by the change of electric charge of suspension and the combination methods of cationic starch and MFC.