• Title/Summary/Keyword: Cellulose Acetate

Search Result 251, Processing Time 0.029 seconds

Removal of BP-3 Endocrine Disrupting Chemical (EDC) using cellulose acetate and ZnOnano particles mixed matrix membranes

  • Rajesha, B.J.;Chandan, H.R.;Sunil, K.;Padaki, Mahesh;Balakrishna, Geetha R.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.507-520
    • /
    • 2016
  • The effect of ZnO on cellulose acetate in the removal of benzophenone-3 (BP-3) was investigated. The benzophenone-3 (BP-3) which is an endocrine disrupting chemical (EDC) was completely removed (100%) from the drinking water using Cellulose Acetate (CA) and zinc oxide (ZnO) composite membranes. The membranes were prepared by DIPS method and the filtration experiments were conducted by dead end filtration unit. The macrostructure of the membrane were studied by ATR-IR and XRD Spectra's. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to study the micro properties of the membranes. The laboratory experiments such as water uptake study and pure water flux performed to confirm the increasing hydrophilicity. The enhancing hydrophilicity was confirmed with respect to higher the concentration of nanoparticles. Evaluation of BP-3 removal was carried in different experimental conditions, such as, different Trans membrane pressure and different concentration of feed. The membrane with low pressure showed better performance by rejecting 100% of BP-3. However, 1 ppm, 3 ppm and 6 ppm of feed solution was used and among them 3 ppm of feed solution gives 100% rejection. The ZnO nanoparticales enhances the performance of CA membrane by showing maximum rejection.

Predicting the Capability Curve of Cellulose Acetate Filters (셀롤로오스 아세테이트 필터의 특성곡선 예측)

  • Kim Soo-HO;Lim Sung-Jin;Kim Chung-Ryul;Shin Chang-Ho;Rhee Moon-Soo;Kim Jong-Yeol
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2005
  • A theoretical model for predicting the capability curve of cellulose acetate filter is derived. The pressure drop is expressed as a function of the filter dimensions, the tow fiber characteristics, the filter weight, the fluid flow rate, and a filter fiber factor. Where, the filter fiber factor is affected by the distribution of the tow fibers within the filter, the relative orientations of the tow fibers, and their cross-sectional shapes. The minimum and maximum fraction of solids in capability curves determined from experimental data. Also, the filter fiber factor is expressed as a function of the filter length, tow fiber length, and tow fiber diameter. Capability curves predicted by the suggested model in this work correspond well with capability curves by experimental data.

Preparation and Characterization of Chitosan/Cellulose Acetate Blend Film (키토산/셀룰로오스 아세테이트 복합필름의 제조와 특성)

  • Jung, Young-Jin;An, Byung-Jae;Choi, Hae-Wook;Kim, Hong-Sung;Lee, Young-Hee
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.10-17
    • /
    • 2007
  • Chitosan(CS) and cellulose acetate(CA) composite films were prepared using formic acid as a cosolvent by casting, solvent evaporating and neutralization method. This study examines if the blending method, which uses formic acid as a cosolvent is efficient in improving the mechanical properties of CS film, especially wet strength and elongation. Formic acid is an effective cosolvent for the blend of CS and CA. Under wet condition, tensile strength and elongation of the composite films were obviously higher than those of the films made from pure CS. FTIR, DSC, and X-ray diffraction showed that the composite films exhibit a high level of compatibility and that strong interaction between the CS and CA was caused by intermolecular hydrogen bonding. The affinity series of composite film to transition metal ions are Cu(II) > Cd(II) > Cr(III). The adsorption of Cu((II) ion was shown to be highly pH sensitive.

Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing (Asiaticoside/2-Hydroxypropyl-β-cyclodextrin 포접화합물 함유 셀룰로오스 아세테이트 섬유 매트의 전기방사: 창상피복제로서 사용가능성과 방출특성)

  • Panichpakdee, Jate;Pavasant, Prasit;Supaphol, Pitt
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.338-350
    • /
    • 2014
  • Cellulose acetate (CA) fiber mats containing inclusion complexes of asiaticoside (AC) in 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$) for potential usage as wound dressings were developed. The AC/$HP{\beta}CD$ complex-loaded CA fibers at various $HP{\beta}CD$ to AC molar ratios of 0.5, 1, and 2 were prepared in 90:10 v/v mixture of 80% (v/v) acetic acid and N,N-dimethylacetamide (DMAc) via electrospinning. The maximum released amounts of AC depended on the $HP{\beta}CD$ content and were much greater than those released from the AC-loaded CA fiber mat. In the in vitro study, indirect cytotoxic evaluation with human dermal fibroblasts (HDFa) showed that these materials released no substances in the levels that were harmful to the cells and the cells appeared to attach and proliferate well on these substrates. However, only the CA fiber mats containing AC/$HP{\beta}CD$ complexes at the $HP{\beta}CD$ to AC molar ratio of 0.5 was effective in upregulating the production of collagen of the cultured cells.

Cellulose acetate membrane preparation by phase inversion to estimate optimized parameters and its performance study

  • Katariya, Heena N;Patel, Tejal M
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2022
  • Development in advanced separation processes leads to the significant advancement in polymeric membrane preparation methodology. Therefore, present research investigated the preparation and characterization of cellulose acetate membrane by phase inversion separation method to determine optimized operating parameters. Prepared CA membrane's performance was been analyzed in terms of % rejection and flux. Investigation was conducted to study effect of different parameters such as polymer concentration, evaporation rate, thickness of film, coagulation bath properties, temperature of polymer solution and of the coagulation bath etc. CA membrane was fabricated by taking polymer concentration 10wt% and 11wt% with zero second evaporation time and varying film thickness over non-woven polyester fabric. Effect of coagulation bath temperature (CBT) and casting solution temperature were also been studied. The experimental results from SEM showed that the surface morphology had been changed with polymer r concentration, coagulation bath and casting solution temperature, etc. Lower polymer concentration leads to lower precipitation time giving porous membrane. The prepared membrane was tested for advanced waste water treatment of relevant effluent stream in pilot plant to study flux and rejection behavior of the membrane.

Optimal filter materials for protist quantification via droplet digital PCR

  • Juhee Min;Kwang Young Kim
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.51-56
    • /
    • 2024
  • The use of droplet digital polymerase chain reaction (ddPCR) has greatly improved the quantification of harmful protists, outperforming traditional methods like quantitative PCR. Notably, ddPCR provides enhanced consistency and reproducibility at it resists PCR inhibitors commonly found in environmental DNA samples. This study aimed to determine the most effective filter material for ddPCR protocols by assessing the reproducibility of species-specific gene copy numbers and filtration time across six filter types: cellulose acetate (CA), mixed cellulose ester (MCE), nylon (NY), polycarbonate (PC), polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The study used two species of Chattonella marina complexes as a case study. Filtration rates were slower for NY, PC, and PVDF filters. Moreover, MCE, NY, PES, and PVDF yielded lower DNA amounts than other filters. Importantly, the CA filter exhibited the lowest variance (38-39%) and the highest determination coefficients (R2 = 0.92-0.96), indicating superior performance. These findings suggest that the CA filter is the most suitable for ddPCR quantification of marine protists, offering quick filtration and reliable reproducibility.

Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility (우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: Cellulose acetate (CA) was blended with polyethyleneglycol (PEG) having different molecular weight at various mixing conditions to enhance melt-processibility of CA, which might prevent the harmful effect resulted from the introduction of phthalic plasticizer. Methods: To establish optimal plasticizing conditions, CA/PEG blends were examined under various plasticizing conditions: PEG concentration, molecular weight of PEG, and plasticzing temperature. Mechanical properties of the CA/PEG blends, as well as migration and exudation of the PEG, were performed in order to evaluate the efficiency of plasticization. Results: Compared to industrial CA resin plasticized by diethyl phthalate, CA/PEG blends exhibited similar thermal plasticization. It was established that the optimum condition was to blend 30~40 phr PEG with molecular weight 400 at $175{\sim}180^{\circ}C$. CA/PEG blend showed superior glassness, PEG stability, and mechanical properties. Conclusions: CA/PEG blends would be a eco-friendly glasses frame to substitute traditional CA glasses frame prepared phthalate plasticizers.

Conversion of Woody Biomass for Utilization( I )-The Preparation of Dissolving Pulp from Mechanical Pulp- (목질계 Biomass의 변환이용(제1보)-기계펄프로부터 용해용펄프의 제조-)

  • 양재경;임부국;이종윤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.51-59
    • /
    • 1997
  • Dissolving pulp is a low yield(30∼35%) bleached chemical pulp that has a high cellulose content (95% or higher) suitable for use in cellulose derivatives such as rayon, cellulose acetate. This research was studied for dissolving pulp preparation as the raw material of viscose rayon from commertial pulps. (TMP, CP, DIP) In the change of pulp(cellulose) characteristics after sodium hypochlorite and solvolysis treatment. the following results were obtained In the case of sodium hypochlorite pretreatment, we have obtained pulp that high purity cellulose, but degree of polymerization was inclined to decrease less than 170∼240. Comparing sodium hypochlorite pretreatment and solvolysis pretreatment, solvolysis pretreatment is superior to sodium hypochlorite process for making dissolving pulp. We think that the low degree of polymerization of cellulose because of increasing degradation of cellulose during delignification treatment.

  • PDF

Effect of Environmental Conditions on the Biodegradation of Cellulose Fibers - Effect of Humidity in Soil - (환경 조건에 따른 셀룰로스계 섬유의 생분해성 - 토양 수분율을 중심으로 -)

  • Kang, Yun-Kyung;Park, Chung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1027-1036
    • /
    • 2005
  • Based on the correlation analysis result of preceding research, the biodegradabilities of cellulose fibers were closely related to the moisture regain of the samples, which reflects the hydrophilicity and internal structure of the fibers. In addition to this factor, it was expected that the biodegradation conditions influence the biodegradability of fibers. In this study, widely used cellulose fibers including cotton, rayon, and acetate were used. The biodegradabilities of cellulose fibers were measured by soilburial test, and then the degradation behaviors based on each condition were compared. Moreover, the effects of degradation conditions such as humidity of the soil were investigated. Changes in the internal structure of samples were also observed by X-ray analysis according to the soil burial time. It was shown that humidity of soil facilitated the degradation of cotton, rayon, and acetate fibers, showing higher degradation rate with higher humidity in soil. This effect was shown to be much greater in the fibers of high moisture regain such as cotton and rayon. In respect of microstructure change, crystallinities and their crystal size of fibers decreased remarkably in the soil of higher humidity. It was revealed that degradation of crystalline area was more dependent on the soil humidity than that of amorphous area.

Study on the Molecular Weight Distribution Curve of Cellulose Triacetate Acetylated Under Various Temperatures (醋酸纖維素의 醋化溫度가 分子量分配曲線에 미치는 影響)

  • Kim, Dong-Il;Noh, Ick-Sam;Cha, Kyong-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 1957
  • Fibrous cellulose triacetate prepared from purified cotton under various temperatures was dissolved in the solution of 70%, monochloroacetic acid and it was fractionated using water as a precipitant. Eight fractions were obtained through the stepwise precipitation. Degree of polymerization and molecular weight of each fraction were measured viscometrically. Integral and differential molecular weight distribution curve were drawn for each sample prepared under various temperatures and were carefully observed. On this experimental study, following conclusions were obtained: Fractional precipitation can be carried out for fibrous cellulose triacetate in the solution of 70% monochloroacetic acid using water as a precipitant. The differences on the shapes of molecular weight distribution curve were occured on account of the various acetylation temperatures. At the relatively higher acetylation temperatures, the cellulose was randomly degraded and the portion of low degree of polymerization was increased. Commercial acetate, therefore, may not be prepared at above 40$^{\circ}C$ according to the molecular weight distribution curve regardless of higher viscosity and average degree of polymerization. It was concluded that the optimum acetylation temperature for commercial acetate was approximately 30$^{\circ}C$.

  • PDF