DOI QR코드

DOI QR Code

Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing

Asiaticoside/2-Hydroxypropyl-β-cyclodextrin 포접화합물 함유 셀룰로오스 아세테이트 섬유 매트의 전기방사: 창상피복제로서 사용가능성과 방출특성

  • Panichpakdee, Jate (The Petroleum and Petrochemical College, Chulalongkorn University) ;
  • Pavasant, Prasit (Department of Anatomy, Faculty of Dentistry, Chulalongkorn University) ;
  • Supaphol, Pitt (The Petroleum and Petrochemical College, Chulalongkorn University)
  • Received : 2013.11.12
  • Accepted : 2014.02.12
  • Published : 2014.05.25

Abstract

Cellulose acetate (CA) fiber mats containing inclusion complexes of asiaticoside (AC) in 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$) for potential usage as wound dressings were developed. The AC/$HP{\beta}CD$ complex-loaded CA fibers at various $HP{\beta}CD$ to AC molar ratios of 0.5, 1, and 2 were prepared in 90:10 v/v mixture of 80% (v/v) acetic acid and N,N-dimethylacetamide (DMAc) via electrospinning. The maximum released amounts of AC depended on the $HP{\beta}CD$ content and were much greater than those released from the AC-loaded CA fiber mat. In the in vitro study, indirect cytotoxic evaluation with human dermal fibroblasts (HDFa) showed that these materials released no substances in the levels that were harmful to the cells and the cells appeared to attach and proliferate well on these substrates. However, only the CA fiber mats containing AC/$HP{\beta}CD$ complexes at the $HP{\beta}CD$ to AC molar ratio of 0.5 was effective in upregulating the production of collagen of the cultured cells.

Keywords

References

  1. W. Stadelmann, A. G. Digenis, and G. R. Tobin, Am. J. Surg., 176, 26S (1998). https://doi.org/10.1016/S0002-9610(98)00183-4
  2. D. MacKay and A. L. Miller, Altern. Med. Rev., 8, 359 (2003).
  3. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.045
  4. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Nano Lett., 3, 213 (2003). https://doi.org/10.1021/nl025866c
  5. M. Ip, S. L. Lui, V. K. M. Poon, I. Lung, and A. Burd, J. Med. Microbiol., 55, 59 (2006). https://doi.org/10.1099/jmm.0.46124-0
  6. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, Biomaterials, 20, 409 (1999). https://doi.org/10.1016/S0142-9612(98)00180-X
  7. O. Suwantong, P. Opanasopit, U. Ruktanonchai, and P. Supaphol, Polymer, 48, 7546 (2007). https://doi.org/10.1016/j.polymer.2007.11.019
  8. B. S. Liu and T. B. Huang, Polym. Composite, 31, 1037 (2010).
  9. T. N. Yudanova and I. V. Reshetov, Pharm. Chem. J., 40, 85 (2006). https://doi.org/10.1007/s11094-006-0065-z
  10. J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, J. Pharm. Sci., 97, 2892 (2008). https://doi.org/10.1002/jps.21210
  11. S. Chand, J. Mater. Sci., 35, 1303 (2000). https://doi.org/10.1023/A:1004780301489
  12. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995). https://doi.org/10.1016/0304-3886(95)00041-8
  13. E. A. Vargas, N. C. do Vale Baracho, J. de Brito, and A. A. A. de Queiroz, Acta Biomater., 6, 1069 (2010). https://doi.org/10.1016/j.actbio.2009.09.018
  14. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B. Appl. Biomater., 67, 675 (2003).
  15. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 1883 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.042
  16. C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Tissue Eng., 10, 1160 (2004). https://doi.org/10.1089/ten.2004.10.1160
  17. T. Kartnig, "Clinical Applications of Centella asiatica (L.) Urb.", in Herbs, spices and medicinal plants: Recent advances in botany, horticulture and pharmacology, L. E. Craker and J. E. Simon, Editors, Oryx Press, Phoenix, Vol 3, p 145 (1996).
  18. F. X. Maquart, F. Chastang, A. Simeon, P. Birembaut, P. Gillery, and Y. Wegrowski, Eur. J. Dermatol., 9, 289 (1999).
  19. P. J. Shim, J. H. Park, M. S. Chang, M. J. Lim, D. H. Kim, Y. H. Jung, S. S. Jew, E. H. Park, and H. D. Kim, Bioorg. Med. Chem. Lett., 6, 2937 (1996). https://doi.org/10.1016/S0960-894X(96)00540-9
  20. A. Shukla, A. M. Rasik, and B. N. Dhawan, Phytother., 13, 50 (1999). https://doi.org/10.1002/(SICI)1099-1573(199902)13:1<50::AID-PTR368>3.0.CO;2-V
  21. O. Suwantong, U. Ruktanonchai, and P. Supaphol, J. Biomed. Mater. Res. A, 94, 1216 (2010).
  22. M. V. G. de Araujo, E. K. B. Vieira, L. G. Silva, L. S. Conegero, L. E. Almeida, L. S. Barreto, Jr., N. B. da Costa, and I. F. Gimenez, Bioorgan. Med. Chem., 16, 5788 (2008). https://doi.org/10.1016/j.bmc.2008.03.057
  23. M. T. Esclusa-Diaz, M. Guimaraens-Mendez, M. B. Perez- Marcos, J. L. Vila-Jato, and J. J. Torres-Labandeira, Int. J. Pharmceut., 143, 203 (1996). https://doi.org/10.1016/S0378-5173(96)04704-7
  24. L. P. Ruan, B. Y. Yu, G. M. Fu, and D. N. Zhu, J. Pharm. Biomed. Anal., 38, 457 (2005). https://doi.org/10.1016/j.jpba.2005.01.030
  25. Y. L. Loukas, E. A. Vyza, and A. P. Valiraki, Analyst, 120, 533 (1995). https://doi.org/10.1039/an9952000533
  26. R. D. Sinisterra, V. P. Shastri, R. Najjar, and R. Langer, J. Pharm. Sci., 88, 574 (1999). https://doi.org/10.1021/js9804314
  27. J. Panichpakdee and P. Supaphol, Carbohyd. Polym., 85, 251 (2011). https://doi.org/10.1016/j.carbpol.2011.02.023
  28. O. Suwantong, U. Ruktanonchai, and P. Supaphol, Polymer, 49, 4239 (2008). https://doi.org/10.1016/j.polymer.2008.07.020
  29. D. M. Aziz, Anim. Reprod. Sci., 92, 1 (2006). https://doi.org/10.1016/j.anireprosci.2005.05.029
  30. A. W. Coleman, I. Nicolis, N. Keller, and J. P. Dalbiez, J. Incl. Phennom. Macrocycl. Chem., 13, 139 (1992). https://doi.org/10.1007/BF01053637
  31. G. Gonzalez-Gaitano, P. Rodriguez, J. R. Isasi, M. Fuentes, G. Tardajos, and M. Sanchez, J. Incl. Phenom. Macrocycl. Chem., 44, 101 (2002). https://doi.org/10.1023/A:1023065823358
  32. M. Suzuki, M. Tsutsui, and H. Ohmori, Carbohyd. Res., 261, 223 (1994). https://doi.org/10.1016/0008-6215(94)84019-9
  33. F. Kayaci and T. Uyar, Food Chem., 133, 641 (2010).
  34. H. M. Marques, J. Hadgraft, and I. W. Kellaway, Int. J. Pharmceut., 63, 259 (1990). https://doi.org/10.1016/0378-5173(90)90132-N
  35. T. Pralhad and K. Rajendrakumar, J. Pharm. Biomed. Anal., 34, 333 (2004). https://doi.org/10.1016/S0731-7085(03)00529-6
  36. N. Bandi, W. Wei, C. B. Roberts, L. P. Kotra, and U. B. Kompella, Eur. J. Pharm. Sci., 23, 159 (2004). https://doi.org/10.1016/j.ejps.2004.06.007
  37. P. Sikareepaisana, U. Ruktanonchaic, and P. Supaphol, Carbohyd. Polym., 83, 1457 (2011). https://doi.org/10.1016/j.carbpol.2010.09.048
  38. K. McFarlin, X. Gao, Y. B. Liu, D. S. Dulchavsky, D. Kwon, A. S. Arbab, M. Bansal, Y. Li, M. Chopp, S. A. Dulchavsky, and S. C. Gautam, Wound Repair Regen., 14, 471 (2006). https://doi.org/10.1111/j.1743-6109.2006.00153.x
  39. R. A. F. Clark, "The Molecular and Cellular Biology of Wound Repair", in Wound Repair: Overview and General Considerations, R. A. F. Clark, Editor, Plenum Press, New York, p 3 (1996).
  40. A. M. Rasik, R. Raghubir, A. Gupta, A. Shukla, M. P. Dubey, S. Srivastava, H. K. Jain, and D. K. Kulshrestha, J. Ethnopharmacol., 68, 261 (1999). https://doi.org/10.1016/S0378-8741(99)00118-X

Cited by

  1. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications vol.11, pp.1, 2014, https://doi.org/10.3390/pharmaceutics11010006
  2. The investigation of binary and ternary sulfobutylether-β-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state vol.498, pp.None, 2014, https://doi.org/10.1016/j.carres.2020.108190
  3. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing vol.7, pp.4, 2014, https://doi.org/10.3390/gels7040209