DOI QR코드

DOI QR Code

Drug Adsorption Behavior of Polyolefin Infusion Tube Compared to PVC and PU

Non-PVC(폴리올레핀) 수액용 튜브 내면에서의 약물흡착 거동 - PVC 및 PU 수액튜브와의 비교

  • Received : 2013.11.12
  • Accepted : 2013.12.31
  • Published : 2014.05.25

Abstract

PVC (polyvinyl chloride) intravenous fluid bags and tubes that contain DEHP (diethylhexyl phthalate) as a plasticizer have several associated disadvantages for intravenous injections. We investigated the drug absorption behaviors on the inner surface of an infusion tube that consisted of commercialized PVC/PU (polyurethane). We developed a non-PVC (polyolefin) tube in order to improve the efficacy of this drug administration method. We prepared four types of non-PVC (polyolefin) infusion tubes using a polyethylene (PE), polypropylene (PP), syndiotactic 1,2-polybutadiene (PB), and styrene-ethylene (SE) copolymer elastomers were prepared using a single screw extruder. The four types of manufactured non-PVC (polyolefin) infusion tubes had good mechanical properties that were equivalent to PVC tube properties. The four types of prepared non-PVC (polyolefin) infusion tubes also prohibited drug absorption when compared to the commercialized PVC and PU tubes. Therefore, based on the results of this study, prepared non-PVC (polyolefin) tubes are good candidates for infusion because they prevent drug absorption and the release of DEHP.

PVC 재질로 만들어진 기존의 수액백과 튜브는 가소제인 DEHP(diethylhexyl phthalate)를 함유하고 있어 정맥 주사 시에 가소제의 용출과 약물 흡착이라는 심각한 취약점을 내재하고 있다. 본 연구에서는 폴리올레핀 재질로 만들어진 non-PVC 수액튜브(가소제 미포함)를 개발하고, 이들 튜브 내면에서의 약물 흡착 거동을 기존의 PVC 및 PU 재질의 수액 튜브와 비교 검토하므로써, 수액 주사 시 약물 흡착으로 인한 약효 감소 효과를 최소화 가능한 방안을 도출하고자 한다. 4가지의 non-PVC 수액튜브는 폴리에틸렌(PE), 폴리프로필렌(PP), syndiotactic 1,2-폴리부타 다이엔(PB)과 스타이렌-에틸렌(SE)의 공중합 탄성체를 사용하여 압출하여 제조하였으며, 이들은 기존의 PVC 수액튜브의 기계적 특성과 동등한 물성을 나타내었다. 아울러 제조된 폴리올레핀 재질의 4가지 수액튜브들은 기존의 PVC 및 PU 재질의 수액튜브 대비 우수한 약물흡착 방지 효과를 나타내었다. 따라서 이들은 약물흡착 방지용 수액튜브뿐 아니라 DEHP의 용출 위험이 배제된 안전한 수액튜브로서 임상 적용 가능할 것이다.

Keywords

References

  1. M. S. Jacobson, S. V. Kevy, R. Parkman, and J. S. Wesolowski, Transfusion, 20, 443 (1980). https://doi.org/10.1046/j.1537-2995.1980.20480260277.x
  2. J. Sampson and D. de Korte, Transfusion Medicine, 21, 73 (2011). https://doi.org/10.1111/j.1365-3148.2010.01056.x
  3. A. Eveillard, F. Lasserre, M. de Tayrac, A. Polizzi, S. Claus, C. Canlet, L. Mselli-Lakhal, G. Gotardi, A. Paris, H. Guillou, P. G. P. Martin, and T. Pineau, Toxicol. Appl. Pharm., 236, 282 (2009). https://doi.org/10.1016/j.taap.2009.02.008
  4. U. Heudorf, V. Mersch-Sundermann, and J. Angerer, Int. J. Hyg. Environ. Health, 210, 623 (2007). https://doi.org/10.1016/j.ijheh.2007.07.011
  5. T. E. Needham and L. A. Luzzi, New Engl. J. Med., 289, 1256 (1973).
  6. B. Maas, C. Hurber, and I. Kramer, Pharm. World Sci., 18, 78 (1996). https://doi.org/10.1007/BF00579710
  7. A. Treleano, G. Wolz, R. Brandsch, and F. Welle, Int. J. Pharmaceut., 369, 30 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.024
  8. D. I. Noh, K. N. Park, C. W. Park, J. W. Jang, Y. G. Ahn, and H. J. Chun, Macromol. Res., 17, 516 (2009). https://doi.org/10.1007/BF03218900
  9. L. Duan, C. K. Park, J. Park, S. Jeon, J. Kim, and D. J. Chung, Biomaterials Research, 16, 147 (2012).
  10. N. K. Kambia, T. Dine, T. Dupin-Spriet, B. Gressier, M. Luyckx, F. Goudaliez, and C. Brunet, J. Pharm. Biomed. Anal., 37, 259 (2005). https://doi.org/10.1016/j.jpba.2004.10.020
  11. S. E. Tsuei, R. L. Nation, and J. Thomas, Eur. J. Clin. Pharmacol., 18, 333 (1980). https://doi.org/10.1007/BF00561391
  12. J. C. Sewell and J. W. Sear, Br. J. Anaesthesia, 92, 45 (2004). https://doi.org/10.1093/bja/aeh016
  13. M. S. Roberts, P. A. Cossum, E. A. Kowaluk, and A. E. Polack, Inter. J. Pharm., 17, 145 (1983). https://doi.org/10.1016/0378-5173(83)90028-5
  14. M. G. Lee, Am. J. Hosp. Pharm., 43, 1945 (1986).
  15. J. H. Diamond and E. M. Wright, Ann. Rev. Physiol., 31, 581 (1969). https://doi.org/10.1146/annurev.ph.31.030169.003053

Cited by

  1. Recovery of the mechanical properties of recycled styrene-ethylene-butylene-styrene/polypropylene (SEBS/PP) composites vol.7, pp.5, 2015, https://doi.org/10.1007/s13530-015-0249-6
  2. Effects of Multiple Recycling on the Structure and Morphology of SEBS/PP Composites vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10776
  3. A comparison of the pharmacokinetic and pharmacodynamic properties of nitroglycerin according to the composition of the administration set vol.97, pp.9, 2018, https://doi.org/10.1097/MD.0000000000009829
  4. Universal Intraductal Surface Antifouling Coating Based on an Amphiphilic Copolymer vol.13, pp.18, 2021, https://doi.org/10.1021/acsami.1c04579