DOI QR코드

DOI QR Code

Optimal filter materials for protist quantification via droplet digital PCR

  • Juhee Min (Department of Oceanography, College of Natural Sciences, Chonnam National University) ;
  • Kwang Young Kim (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • Received : 2024.01.06
  • Accepted : 2024.03.05
  • Published : 2024.03.21

Abstract

The use of droplet digital polymerase chain reaction (ddPCR) has greatly improved the quantification of harmful protists, outperforming traditional methods like quantitative PCR. Notably, ddPCR provides enhanced consistency and reproducibility at it resists PCR inhibitors commonly found in environmental DNA samples. This study aimed to determine the most effective filter material for ddPCR protocols by assessing the reproducibility of species-specific gene copy numbers and filtration time across six filter types: cellulose acetate (CA), mixed cellulose ester (MCE), nylon (NY), polycarbonate (PC), polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The study used two species of Chattonella marina complexes as a case study. Filtration rates were slower for NY, PC, and PVDF filters. Moreover, MCE, NY, PES, and PVDF yielded lower DNA amounts than other filters. Importantly, the CA filter exhibited the lowest variance (38-39%) and the highest determination coefficients (R2 = 0.92-0.96), indicating superior performance. These findings suggest that the CA filter is the most suitable for ddPCR quantification of marine protists, offering quick filtration and reliable reproducibility.

Keywords

Acknowledgement

This research was supported by a National Research Foundation (NRF) grant funded by the Korean government (MSIT) (NRF-2016R1A6A1A03012647, NRF-2020- R1A2C3005053, NRF-2022M3I6A1085991) to KYK.

References

  1. Devonshire, A. S., Honeyborne, I., Gutteridge, A., et al. 2015. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Anal. Chem. 87:3706-3713. doi.org/10.1021/ac5041617
  2. Djurhuus, A., Port, J., Closek, C. J., et al. 2017. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front. Mar. Sci. 4:314. doi.org/10.3389/fmars.2017.00314
  3. Harrison, J. B., Sunday, J. M. & Rogers, S. M. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 286:20191409. doi.org/10.1098/rspb.2019.1409
  4. Lee, H.-G., Kim, H. M., Min, J., et al. 2017. An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae). Algae 32:189-197. doi.org/10.4490/algae.2017.32.9.10
  5. Lee, H.-G., Kim, H. M., Min, J., et al. 2020. Quantification of the paralytic shellfish poisoning dinoflagellate Alexandrium species using a digital PCR. Harmful Algae 92:101726. doi.org/10.1016/j.hal.2019.101726
  6. Liang, Z. & Keeley, A. 2013. Filtration recovery of extracellular DNA from environmental water samples. Environ. Sci. Technol. 47:9324-9331. doi.org/10.1021/es401342b
  7. Majaneva, M., Diserud, O. H., Eagle, S. H. C., Bostrom, E., Hajibabaei, M. & Ekrem, T. 2018. Environmental DNA filtration techniques affect recovered biodiversity. Sci. Rep. 8:4682. doi.org/10.1038/s41598-018-23052-8
  8. Min, J. & Kim, K. Y. 2022. Quantification of the ichthyotoxic raphidophyte Chattonella marina complex by applying a droplet digital PCR. Algae 37:281-291. doi. org/10.4490/algae.2022.37.11.30
  9. Pilliod, D. S., Goldgerg, C. S., Arkle, R. S. & Waits, L. P. 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14:109-116. doi.org/10.1111/1755-0998.12159
  10. Pinheiro, L. B., Coleman, V. A., Hindson, C. M., et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84:1003-1011. doi.org/10.1021/ac202578x
  11. R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.Rproject.org/. Accessed Sep 15, 2022.
  12. Reid, A. J., Carlson, A. K., Creed, I. F., et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94:849-873. doi.org/10.1111/brv.12480
  13. Spens, J., Evans, A. R., Halfmaerten, D., et al. 2017. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8:635-645. doi.org/10.1111/2041-210X.12683
  14. Strickler, K. M., Fremier, A. K. & Goldberg, C. S. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183:85-92. doi.org/10.1016/j.biocon.2014.11.038
  15. Van Oss, C. J., Good, R. J. & Chaudhury, M. K. 1987. Mechanism of DNA (Southern) and protein (Western) blotting on cellulose nitrate and other membranes. J. Chromatogr. A 391:53-65. doi.org/10.1016/s0021-9673(01)94304-3