• Title/Summary/Keyword: Cellular proliferation

Search Result 1,043, Processing Time 0.02 seconds

Effect of CLA (Conjugated Linoleic Acid) on the Anti-Atherosclerotic actors in Human Hepatoma HepG2 Cells (간암세포 (HepG2 Cell)에서의 식이성 CLA(Conjugated Linoleic Acid)가 항동맥경화성 인자에 미치는 영향)

  • 오현희;문희정;이명숙
    • Journal of Nutrition and Health
    • /
    • v.37 no.3
    • /
    • pp.182-192
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA), which is found abundantly in dairy products and meats. This study was performed to investigate the anticarcinogenic effect of CLA in HepG2 hepatoma cells. HepG2 cell were treated with LA and CLA at the various concentrations of 10, 20, 40, 80 uM each at different incubation times. After each incubation times, cell proliferation, fatty acids incorporation into cell, peroxidation and postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) for the eicosanoid metabolism were measured. LA treated HepG2 cells were increased cell growth 6 - 70% of control whereas CLA increased cell death the half of those in LA group (p 〈 0.001). LA and CLA were incorporated very well into the cellular membranes four times higher than in control according to concentration and longer incubation times. Moreover, LA synthesized significantly arachidonic acids corresponding with LA concentration compared to CLA supplementation. The supplementation with LA increased intracellular lipid peroxides concentration corresponding with LA concentration and five times higher than those in CLA significantly at any incubation times (p 〈 0.001). PGE$_2$ and TXA$_2$ levels were three to twenty times lower in condition of CLA treatments than LA, respectively. Overall, the dietary CLA might change the HepG2 cell growth by the changes of cell composition, production of lipid peroxide. Since CLA have not changed the levels of arachidonic acid of cell membrane, which was sources of eicosanoids, eicosanoid synthesis was not increased in CLA compared to LA. Our results was suggest CLA has a possibility to protect the progress of atherosclerosis because CLA does not produce lipid production and endothelial contraction factors in liver.

Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts (Angiopoietin-2가 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Ko, Seon-Yle
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.17-25
    • /
    • 2006
  • The present study was undertaken to determine the possible cellular mechanism of action of angiopoietin-2 in bone metabolism. The effects on the osteoblasts were determined by measuring 1) cell viability, 2) alkaline phosphatase (ALP) activity, 3) gelatinase activity, and 4) nitric oxide production. The effects on the osteoclasts were investigated by measuring 1) tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation, and 2) resorption areas after culturing osteoclast precursors. Angiopoietin-2 treatment showed a significant increase in both the viability and ALP activity of osteoblasts. Angiopoietin-2 increased the activity of gelatinase and nitric oxide production. In addition, angiopoietin-2 decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL), and inhibited osteoclastic activity in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, angiopoietin-2 may be a regulatory protein within the bone marrow microenvironment.

Genetic Polymorphism of ADPRT Gene 3'UTR Region and Sasang Constitution (사상체질집단의 ADPRT gene 3'UTR region의 단일염기다형성 연구)

  • Lee, Sung-Jin;Song, Il-Byung;Lee, Su-Kyung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.14 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • Sasang Constitutional Medicine is based on the diversity of human being and medically developed the variation of response to diseases and medicines. The diversity is categorized as four groups Taeyangin, Taeumin, Soyangin, Soeumin according to morphology, physiology, pathology, and pharmacology. The phenotypes of Sasang constitutions represent that constitutions may be possessed of the different genetic backgrounds. To clarify the genetic difference among the Sasang constitutions, we performed a genetic analysis with the 3'-UTR polymorphism of ADPRT (rs=8679) as a pooled DNA sequencing method. ADPRT modulates various nuclear proteins by poly(ADP-ribosy)lation and is involved in the regulation of various cellular processes such as differentiation, proliferation, and tumor transformation. This gene is also involved in the recovery of cell from DNA damage and the brain infarction. The allele frequencies of [T/C] polymorphism of ADPRT of Soeumin and Soyangin groups were (T: 0.94/C: 0.06) and that of Taeumin and Taeyangin groups were (T: l.00/C: 0.00). The allele frequency was not showed the difference between constitution groups. This result represented that the [T/C] polymorphism of ADPRT 3' UTR region was not suitable to classify the constitutions. However, this study is the first trial of Sasang classification according to genetic polymorphism and further analysis will be necessarily to classify the genetic difference of Sasang constitution.

  • PDF

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8

  • An, Byung Chull;Ryu, Yongku;Yoon, Yeo-Sang;Choi, Oksik;Park, Ho Jin;Kim, Tai Yeub;Kim, Song-In;Kim, Bong-Kyu;Chung, Myung Jun
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.755-762
    • /
    • 2019
  • Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

  • Yeo, Ji-Hee;Kim, Sol-Ji;Roh, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 μl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects

  • Meligy, Fatma Y.;Elgamal, Dalia A.;Abdelzaher, Lobna A.;Khashbah, Maha Y.;El-Mokhtar, Mohamed A.;Sayed, Ayat A.;Refaiy, Abeer M.;Othman, Essam R.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.322-336
    • /
    • 2021
  • Objective: Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods: Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats' peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results: The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion: Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung;Kim, Yu Na;Kim, Ye Eun;Lee, Seo Yul;Shin, Min Joo;Do, Eun Kyoung;Choi, Kyung-Un;Kim, Seung-Chul;Kim, Ki-Hyung;Suh, Dong-Soo;Song, Parkyong;Kim, Jae Ho
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.481-492
    • /
    • 2021
  • Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.

Genetic alterations in Wnt family of genes and their putative association with head and neck squamous cell carcinoma

  • Aditya, Jain;Smiline Girija, A.S.;Paramasivam, A.;Priyadharsini, J. Vijayashree
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.5.1-5.11
    • /
    • 2021
  • Head and neck squamous cell carcinoma (HNSCC) is the most frequent type of head and neck cancer that usually arises from the mucosal surfaces of several organs including nasal cavity, paranasal sinuses, oral cavity, tongue, pharynx, and larynx. The Wnt signaling pathway is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration, and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. The present study aims to assess the gene alterations in the Wnt family of genes so as to derive an association with HNSCC. Computational approaches have been utilized for the identification of gene alterations in the Wnt family of genes. Several databases such as cBioportal, STRING, and UALCAN were used for the purpose. The frequency of alteration was high in case of Wnt family member 11 (5%). Gene amplification, deep deletions, missense and truncating mutations were observed in HNSCC patients. There was a marked difference in the gene expression profile of WNT11 between grades as well as normal samples. The survival probability measured using the Kaplan-Meier curve also presented with a significant difference among male and female subjects experiencing a low/medium level expression. The female patients showed less survival probability when compared to the male subjects. This provides the prognostic significance of the WNT11 gene in HNSCC. Taken together, the present study provides clues on the possible association of WNT11 gene alterations with HNSCC, which has to be further validated using experimental approaches.