Acknowledgement
Support for this research was by the MRC programs (NRF-2015R1A5A2009656) of the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2020R1I1A3073064; NRF-2020R1A2C2011880) and the 2019 Post-Doc Development program of Pusan National University.
References
- Al-Alem, L.F., Pandya, U.M., Baker, A.T., Bellio, C., Zarrella, B.D., Clark, J., DiGloria, C.M., and Rueda, B.R. (2019). Ovarian cancer stem cells: what progress have we made? Int. J. Biochem. Cell Biol. 107, 92-103. https://doi.org/10.1016/j.biocel.2018.12.010
- Anastas, J.N. and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26. https://doi.org/10.1038/nrc3419
- Arend, R.C., Londono-Joshi, A.I., Straughn, J.M., Jr., and Buchsbaum, D.J. (2013). The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol. Oncol. 131, 772-779. https://doi.org/10.1016/j.ygyno.2013.09.034
- Bamias, A., Sotiropoulou, M., Zagouri, F., Trachana, P., Sakellariou, K., Kostouros, E., Kakoyianni, K., Rodolakis, A., Vlahos, G., Haidopoulos, D., et al. (2012). Prognostic evaluation of tumour type and other histopathological characteristics in advanced epithelial ovarian cancer, treated with surgery and paclitaxel/carboplatin chemotherapy: cell type is the most useful prognostic factor. Eur. J. Cancer 48, 1476-1483. https://doi.org/10.1016/j.ejca.2011.09.023
- Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
- Cannistra, S.A. (2004). Cancer of the ovary. N. Engl. J. Med. 351, 2519-2529. https://doi.org/10.1056/NEJMra041842
- Cao, Z., Livas, T., and Kyprianou, N. (2016). Anoikis and EMT: lethal "liaisons" during cancer progression. Crit. Rev. Oncog. 21, 155-168. https://doi.org/10.1615/critrevoncog.2016016955
- Cervello, M., Augello, G., Cusimano, A., Emma, M.R., Balasus, D., Azzolina, A., McCubrey, J.A., and Montalto, G. (2017). Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv. Biol. Regul. 65, 59-76. https://doi.org/10.1016/j.jbior.2017.06.002
- Chau, W.K., Ip, C.K., Mak, A.S., Lai, H.C., and Wong, A.S. (2013). c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 32, 2767-2781. https://doi.org/10.1038/onc.2012.290
- Choi, E.J., Seo, E.J., Kim, D.K., Lee, S.I., Kwon, Y.W., Jang, I.H., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells. Oncotarget 7, 3506-3519. https://doi.org/10.18632/oncotarget.6510
- Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
- Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., and Stefanovic, V. (2011). Ovarian epithelial cancer stem cells. ScientificWorldJournal 11, 1243-1269. https://doi.org/10.1100/tsw.2011.112
- Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. https://doi.org/10.1038/378785a0
- Dion, L., Carton, I., Jaillard, S., Nyangoh Timoh, K., Henno, S., Sardain, H., Foucher, F., Leveque, J., de la Motte Rouge, T., Brousse, S., et al. (2020). The landscape and therapeutic implications of molecular profiles in epithelial ovarian cancer. J. Clin. Med. 9, 2239. https://doi.org/10.3390/jcm9072239
- Do, E.K., Park, J.K., Cheon, H.C., Kwon, Y.W., Heo, S.C., Choi, E.J., Seo, J.K., Jang, I.H., Lee, S.C., and Kim, J.H. (2017). Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Exp. Mol. Med. 49, e401. https://doi.org/10.1038/emm.2017.191
- Erazo, T., Lorente, M., Lopez-Plana, A., Munoz-Guardiola, P., FernandezNogueira, P., Garcia-Martinez, J.A., Bragado, P., Fuster, G., Salazar, M., Espadaler, J., et al. (2016). The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating Tribbles-3 pseudokinase. Clin. Cancer Res. 22, 2508-2519. https://doi.org/10.1158/1078-0432.CCR-15-1808
- Eyers, P.A., Keeshan, K., and Kannan, N. (2017). Tribbles in the 21st century: the evolving roles of Tribbles pseudokinases in biology and disease. Trends Cell Biol. 27, 284-298. https://doi.org/10.1016/j.tcb.2016.11.002
- Friedman, A.D. (2015). C/EBPalpha in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330-341. https://doi.org/10.1007/s12185-015-1764-6
- Geiger, T.R. and Peeper, D.S. (2009). Metastasis mechanisms. Biochim. Biophys. Acta 1796, 293-308.
- Grandinetti, K.B., Stevens, T.A., Ha, S., Salamone, R.J., Walker, J.R., Zhang, J., Agarwalla, S., Tenen, D.G., Peters, E.C., and Reddy, V.A. (2011). Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPalpha. Oncogene 30, 3328-3335. https://doi.org/10.1038/onc.2011.57
- Hill, R., Madureira, P.A., Ferreira, B., Baptista, I., Machado, S., Colaco, L., Dos Santos, M., Liu, N., Dopazo, A., Ugurel, S., et al. (2017). TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat. Commun. 8, 14687. https://doi.org/10.1038/ncomms14687
- Holland, J.D., Klaus, A., Garratt, A.N., and Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264. https://doi.org/10.1016/j.ceb.2013.01.004
- Hua, F., Shang, S., Yang, Y.W., Zhang, H.Z., Xu, T.L., Yu, J.J., Zhou, D.D., Cui, B., Li, K., Lv, X.X., et al. (2019). TRIB3 interacts with beta-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology 156, 708-721.e15. https://doi.org/10.1053/j.gastro.2018.10.031
- Jacob, F., Ukegjini, K., Nixdorf, S., Ford, C.E., Olivier, J., Caduff, R., Scurry, J.P., Guertler, R., Hornung, D., Mueller, R., et al. (2012). Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 7, e31885. https://doi.org/10.1371/journal.pone.0031885
- Jones, M.R., Kamara, D., Karlan, B.Y., Pharoah, P.D.P., and Gayther, S.A. (2017). Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol. Oncol. 147, 705-713. https://doi.org/10.1016/j.ygyno.2017.10.001
- Keeshan, K., He, Y., Wouters, B.J., Shestova, O., Xu, L., Sai, H., Rodriguez, C.G., Maillard, I., Tobias, J.W., Valk, P., et al. (2006). Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 10, 401-411. https://doi.org/10.1016/j.ccr.2006.09.012
- Kritsch, D., Hoffmann, F., Steinbach, D., Jansen, L., Mary Photini, S., Gajda, M., Mosig, A.S., Sonnemann, J., Peters, S., Melnikova, M., et al. (2017). Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int. J. Cancer 141, 1600-1614. https://doi.org/10.1002/ijc.30860
- Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
- Liang, Y., Yu, D., Perez-Soler, R., Klostergaard, J., and Zou, Y. (2017). TRIB2 contributes to cisplatin resistance in small cell lung cancer. Oncotarget 8, 109596-109608. https://doi.org/10.18632/oncotarget.22741
- Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., Wang, X., Huss, W.J., Lele, S.B., Morrison, C.D., et al. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxiaresistant metabolism. PLoS One 9, e84941. https://doi.org/10.1371/journal.pone.0084941
- Link, W. (2015). Tribbles breaking bad: TRIB2 suppresses FOXO and acts as an oncogenic protein in melanoma. Biochem. Soc. Trans. 43, 1085-1088. https://doi.org/10.1042/BST20150102
- Loessner, D., Stok, K.S., Lutolf, M.P., Hutmacher, D.W., Clements, J.A., and Rizzi, S.C. (2010). Bioengineered 3D platform to explore cellECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494-8506. https://doi.org/10.1016/j.biomaterials.2010.07.064
- Lohan, F. and Keeshan, K. (2013). The functionally diverse roles of tribbles. Biochem. Soc. Trans. 41, 1096-1100. https://doi.org/10.1042/BST20130105
- Lupia, M. and Cavallaro, U. (2017). Ovarian cancer stem cells: still an elusive entity? Mol. Cancer 16, 64. https://doi.org/10.1186/s12943-017-0638-3
- Ma, X., Zhou, X., Qu, H., Ma, Y., Yue, Z., Shang, W., Wang, P., Xie, S., Li, Y., and Sun, Y. (2018). TRIB2 knockdown as a regulator of chemotherapy resistance and proliferation via the ERK/STAT3 signaling pathway in human chronic myelogenous leukemia K562/ADM cells. Oncol. Rep. 39, 1910-1918.
- Marcato, P., Dean, C.A., Giacomantonio, C.A., and Lee, P.W. (2011). Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10, 1378-1384. https://doi.org/10.4161/cc.10.9.15486
- Naora, H. and Montell, D.J. (2005). Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 5, 355-366. https://doi.org/10.1038/nrc1611
- Nusse, R. and Clevers, H. (2017). Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
- Orecchioni, S. and Bertolini, F. (2016). Characterization of cancer stem cells. Methods Mol. Biol. 1464, 49-62. https://doi.org/10.1007/978-1-4939-3999-2_5
- Peng, S., Maihle, N.J., and Huang, Y. (2010). Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29, 2153-2159. https://doi.org/10.1038/onc.2009.500
- Petrik, J.J. (2013). Challenges in experimental modeling of ovarian cancerogenesis. Methods Mol. Biol. 1049, 371-376. https://doi.org/10.1007/978-1-62703-547-7_28
- Qu, J., Liu, B., Li, B., Du, G., Li, Y., Wang, J., He, L., and Wan, X. (2019). TRIB3 suppresses proliferation and invasion and promotes apoptosis of endometrial cancer cells by regulating the AKT signaling pathway. Onco Targets Ther. 12, 2235-2245. https://doi.org/10.2147/OTT.S189001
- Sakai, S., Miyajima, C., Uchida, C., Itoh, Y., Hayashi, H., and Inoue, Y. (2016). Tribbles-related protein family members as regulators or substrates of the ubiquitin-proteasome system in cancer development. Curr. Cancer Drug Targets 16, 147-156. https://doi.org/10.2174/1568009616666151112122645
- Salazar, M., Lorente, M., Garcia-Taboada, E., Perez Gomez, E., Davila, D., Zuniga-Garcia, P., Maria Flores, J., Rodriguez, A., Hegedus, Z., MosenAnsorena, D., et al. (2015). Loss of Tribbles pseudokinase-3 promotes Aktdriven tumorigenesis via FOXO inactivation. Cell Death Differ. 22, 131-144. https://doi.org/10.1038/cdd.2014.133
- Salome, M., Campos, J., and Keeshan, K. (2015). TRIB2 and the ubiquitin proteasome system in cancer. Biochem. Soc. Trans. 43, 1089-1094. https://doi.org/10.1042/BST20150103
- Salome, M., Magee, A., Yalla, K., Chaudhury, S., Sarrou, E., Carmody, R.J., and Keeshan, K. (2018). A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 9, 443. https://doi.org/10.1038/s41419-018-0467-3
- Sato, R., Semba, T., Saya, H., and Arima, Y. (2016). Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells 34, 1997-2007. https://doi.org/10.1002/stem.2406
- Seo, E.J., Kim, D.K., Jang, I.H., Choi, E.J., Shin, S.H., Lee, S.I., Kwon, S.M., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 7, 55624-55638. https://doi.org/10.18632/oncotarget.10954
- Singh, A. and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
- Sweeney, K., Cameron, E.R., and Blyth, K. (2020). Complex interplay between the RUNX transcription factors and Wnt/beta-catenin pathway in cancer: a tango in the night. Mol. Cells 43, 188-197. https://doi.org/10.14348/molcells.2019.0310
- Van Camp, J.K., Beckers, S., Zegers, D., and Van Hul, W. (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. Rep. 10, 207-229. https://doi.org/10.1007/s12015-013-9486-8
- Wang, J., Park, J.S., Wei, Y., Rajurkar, M., Cotton, J.L., Fan, Q., Lewis, B.C., Ji, H., and Mao, J. (2013). TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol. Cell 51, 211-225. https://doi.org/10.1016/j.molcel.2013.05.013
- Wang, Y., Hewitt, S.M., Liu, S., Zhou, X., Zhu, H., Zhou, C., Zhang, G., Quan, L., Bai, J., and Xu, N. (2006). Tissue microarray analysis of human FRAT1 expression and its correlation with the subcellular localisation of betacatenin in ovarian tumours. Br. J. Cancer 94, 686-691. https://doi.org/10.1038/sj.bjc.6602988
- Xu, S., Tong, M., Huang, J., Zhang, Y., Qiao, Y., Weng, W., Liu, W., Wang, J., and Sun, F. (2014). TRIB2 inhibits Wnt/beta-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, beta-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 588, 4334-4341. https://doi.org/10.1016/j.febslet.2014.09.042
- Yokoyama, T. and Nakamura, T. (2011). Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci. 102, 1115-1122. https://doi.org/10.1111/j.1349-7006.2011.01914.x
- Zhang, S., Jing, Y., Zhang, M., Zhang, Z., Ma, P., Peng, H., Shi, K., Gao, W.Q., and Zhuang, G. (2015). Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci. Rep. 5, 16066. https://doi.org/10.1038/srep16066
- Zhang, X., Zhong, N., Li, X., and Chen, M.B. (2019). TRIB3 promotes lung cancer progression by activating beta-catenin signaling. Eur. J. Pharmacol. 863, 172697. https://doi.org/10.1016/j.ejphar.2019.172697
- Zyla, R.E., Olkhov-Mitsel, E., Amemiya, Y., Bassiouny, D., Seth, A., Djordjevic, B., Nofech-Mozes, S., and Parra-Herran, C. (2021). CTNNB1 mutations and aberrant β-catenin expression in ovarian endometrioid carcinoma: correlation with patient outcome. Am. J. Surg. Pathol. 45, 68-76. https://doi.org/10.1097/PAS.0000000000001553