DOI QR코드

DOI QR Code

Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8

  • Received : 2019.04.05
  • Accepted : 2019.08.22
  • Published : 2019.11.30

Abstract

Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.

Keywords

References

  1. Adriana, N., Anna, P., and Janusz, B. (2018). Anti-proliferative, proapoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci. Nutr. 16, 1-12.
  2. Cousin, F.J., Jouan-Lanhouet, S., Theret, N., Brenner, C., Jouan, E., MOigne-Muller, G.L., Dimanche-Boitrel, M.T., and Jan, G. (2016). The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-base therapy in colorectalcancer. Oncotarget 7, 7161-7178. https://doi.org/10.18632/oncotarget.6881
  3. Dantoft, S.H., Bielak, E.M., Seo, J.G., Chung, M.J., and Jensen, P.R. (2013). Complete genome sequence of Pediococcus pentosaceus strain SL4. Genome Announc. 1, e01106-e01113.
  4. Drouault, S., Corthier, G., Ehrlich, S.D., and Renault, P. (1999). Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Environ. Microbiol. 65, 4881-4886. https://doi.org/10.1128/AEM.65.11.4881-4886.1999
  5. Flambard, B. and Juillard, V. (2000). The autoproteolysis of Lactococcus lactis lactocepin III affects its specificity towards beta-casein. Appl. Environ. Microbiol. 66, 5134-5140. https://doi.org/10.1128/AEM.66.12.5134-5140.2000
  6. Hendler, R. and Zhang, Y. (2018). Probiotics in the treatment of colorectal cancer. Medicines (Basel) 5, 1-14. https://doi.org/10.3390/medicines5010001
  7. Hormannsperger, G., von Schillde, M.A., and Haller, D. (2013). Lactocepin as a protective microbial structure in the context of IBD. Gut Microbes 4, 152-157. https://doi.org/10.4161/gmic.23444
  8. Kim, M.S., Kim, J.E., Yoon, Y.S., Kim, T.H., Seo, J.G., Chung, M.J., and Yum, D.Y. (2015). Improvement of atopic dermatitis-like skin lesions by IL-4 inhibition of P14 protein isolated from Lactobacillus casei in NC/Nga mice. Appl. Microbiol. Biotechnol. 99, 7089-7099. https://doi.org/10.1007/s00253-015-6455-y
  9. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. (2008). Evolution of mammals and their gut microbes. Science 320, 1647-1651. https://doi.org/10.1126/science.1155725
  10. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., et al. (2006). Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 103, 15611-15616. https://doi.org/10.1073/pnas.0607117103
  11. McWilliams, R.R. and Erlichman, C. (2005). Novel therapeutics in colorectal cancer. Dis. Colon Rectum 48, 1632-1650. https://doi.org/10.1007/s10350-005-0026-8
  12. Orlando, A., Refolo, M.G., Messa, C., Amati, L., Lavermicocca, P., Guerra, V., and Russo, F. (2012). Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer 64, 1103-1111. https://doi.org/10.1080/01635581.2012.717676
  13. Papagianni, M. and Anastasiadou, S. (2009). Pediocins: the bacteriocins of pediococci. Sources, production, properties and applications. Microb. Cell Fact. 8, 3. https://doi.org/10.1186/1475-2859-8-3
  14. Quercia, S., Candela, M., Giuliani, C., Turroni, S., Luiselli, D., Rampelli, S., Brigidi, P., Franceschi, C., Bacalini, M.G., Garagnani, P., et al. (2014). From lifetime to evolution: timescales of human gut microbiota adaptation. Front. Microbiol. 5, 587.
  15. Quigley, E.M. (2011). Gut microbiota and the role of probiotics in therapy. Curr. Opin. Pharmacol. 11, 593-603. https://doi.org/10.1016/j.coph.2011.09.010
  16. Sadeghi-Aliabadi, H., Mohammadi, F., Fazeli, H., and Mirlohi, M. (2014). Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran. J. Basic Med. Sci. 17, 815-819.
  17. Shin, M.S., Han, S.K., Ryu, J.S., Kim, K.S., and Lee, W.K. (2008). Isolation and partial characterization of a bacteriocin produced by P. pentosaceus K23-2 isolated from Kimchi. J. Appl. Microbiol. 105, 331-339. https://doi.org/10.1111/j.1365-2672.2008.03770.x
  18. Steidler, L. and Vandenbroucke, K. (2006). Genetically modified Lactococcus lactis: novel tools for drug delivery. Int. J. Dairy Technol. 59, 140-146. https://doi.org/10.1111/j.1471-0307.2006.00255.x
  19. Uccello, M., Malaguarnera, G., Basile, F., D'agata, V., Malaguarnera, M., Bertino, G., Vacante, M., Drago, F., and Biondi, A. (2012). Potential role of probiotics on colorectal cancer prevention. BMC Surg. 12 Suppl 1, S35. https://doi.org/10.1186/1471-2482-12-S1-S35
  20. von Schillde, M.A., Hormannsperger, G., Weiher, M., Alpert, C.A., Hahne, H., Bauerl, C., van Huynegem, K., Steidler, L., Hrncir, T., Perez-Martinez, G., et al. (2012). Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11, 387-396. https://doi.org/10.1016/j.chom.2012.02.006
  21. Weitz, J., Koch, M., Debus, J., Hohler, T., Galle, P.R., and Büchler, M.W. (2005). Colorectal cancer. Lancet 365, 153-165. https://doi.org/10.1016/S0140-6736(05)17706-X
  22. Widakowich, C., de Castro, G. Jr., de Azambuja, E., Dinh, P., and Awada, A. (2007). Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12, 1443-1455. https://doi.org/10.1634/theoncologist.12-12-1443
  23. Yan, F., Cao, H., Cover, T.L., Whitehead, R., Washington, M.K., and Polk, D.B. (2007). Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562-575. https://doi.org/10.1053/j.gastro.2006.11.022
  24. Zakostelska, Z., Kverka, M., Klimesova, K., Rossmann, P., Mrazek, J., Kopecny, J., Hornova, M., Srutkova, D., Hudcovic, T., Ridl, J., et al. (2011). Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6, e27961. https://doi.org/10.1371/journal.pone.0027961
  25. Zhang, L., Ren, X., Alt, E., Bai, X., Huang, S., Xu, Z., Lynch, P.M., Moyer, M.P., Wen, X.F., and Wu, X. (2010). Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464, 1058-1061. https://doi.org/10.1038/nature08871
  26. Zhong, L., Zhang, X., and Covasa, M. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 20, 7878-7886. https://doi.org/10.3748/wjg.v20.i24.7878

Cited by

  1. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing vol.12, 2019, https://doi.org/10.3389/fmicb.2021.762467
  2. Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression vol.9, pp.5, 2019, https://doi.org/10.3390/microorganisms9051021
  3. Looking into key bacterial proteins involved in gut dysbiosis vol.11, pp.4, 2019, https://doi.org/10.5662/wjm.v11.i4.130
  4. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota vol.9, pp.1, 2021, https://doi.org/10.1186/s40168-021-01071-4