DOI QR코드

DOI QR Code

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Liu, Zhihua (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Guo, Ling (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Liu, Rui (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Li, Rulei (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Chu, Xiang (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Yang, Jiajia (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Luo, Jia (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University) ;
  • Chen, Faming (Department of Periodontology, School of Stomatology, Air Force Medical University) ;
  • Deng, Manjing (Department of Stomatology, Daping Hospital & Research Institute of Surgery, Army Medical University)
  • Received : 2019.02.14
  • Accepted : 2019.09.05
  • Published : 2019.11.30

Abstract

Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Keywords

References

  1. Abbayya, K., Zope, S.A., Naduwinmani, S., Pisal, A., and Puthanakar, N. (2015). Cell- and gene-based therapeutics for periodontal regeneration. Int. J. Prev. Med. 6, 110. https://doi.org/10.4103/2008-7802.169080
  2. Campbell, L., Millhouse, E., Malcolm, J., and Culshaw, S. (2016). T cells, teeth and tissue destruction - what do T cells do in periodontal disease? Mol. Oral Microbiol. 31, 445-456. https://doi.org/10.1111/omi.12144
  3. Chen, D., Wu, L., Liu, L., Gong, Q., Zheng, J., Peng, C., and Deng, J. (2017). Comparison of HIF1AAS1 and HIF1AAS2 in regulating HIF1alpha and the osteogenic differentiation of PDLCs under hypoxia. Int. J. Mol. Med. 40, 1529-1536. https://doi.org/10.3892/ijmm.2017.3138
  4. Eke, P.I., Dye, B.A., Wei, L., Slade, G.D., Thornton-Evans, G.O., Borgnakke, W.S., Taylor, G.W., Page, R.C., Beck, J.D., and Genco, R.J. (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86, 611-622. https://doi.org/10.1902/jop.2015.140520
  5. Eltzschig, H.K. and Carmeliet, P. (2011). Hypoxia and inflammation. N. Engl. J. Med. 364, 656-665. https://doi.org/10.1056/NEJMra0910283
  6. Feng, F., Akiyama, K., Liu, Y., Yamaza, T., Wang, T.M., Chen, J.H., Wang, B.B., Huang, G.T.J., Wang, S., and Shi, S. (2010). Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 16, 20-28. https://doi.org/10.1111/j.1601-0825.2009.01593.x
  7. Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D. (2009). Transcriptional regulation of osteoblasts. Cells Tissues Organs 189, 144-152. https://doi.org/10.1159/000151747
  8. Goldring, M.B., Tsuchimochi, K., and Ijiri, K. (2006). The control of chondrogenesis. J. Cell. Biochem. 97, 33-44. https://doi.org/10.1002/jcb.20652
  9. Golz, L., Memmert, S., Rath-Deschner, B., Jager, A., Appel, T., Baumgarten, G., Gotz, W., and Frede, S. (2015). Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-kappaB activation in PDL cells and periodontal diseases. Mediators Inflamm. 2015, 438085. https://doi.org/10.1155/2015/438085
  10. Guan, J., Wang, J., Che, X., and Li, D. (2008). Experimental study on the effect of hypoxia on the expression of VEGF and TGF-beta1 of rat mandibular osteoblasts. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22, 984-988.
  11. Hu, K. and Olsen, B.R. (2016). The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30-38. https://doi.org/10.1016/j.bone.2016.06.013
  12. Jia, X.W., Yuan, Y.D., Yao, Z.X., Wu, C.J., Chen, X., Chen, X.H., Lin, Y.M., Meng, X.Y., Zeng, X.T., and Shao, J. (2017). Association between IL-4 and IL-4R polymorphisms and periodontitis: a meta-analysis. Dis. Markers 2017, 8021279.
  13. Kassebaum, N.J., Bernabe, E., Dahiya, M., Bhandari, B., Murray, C.J., and Marcenes, W. (2014). Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045-1053. https://doi.org/10.1177/0022034514552491
  14. Kim, H.H., Lee, S.E., Chung, W.J., Choi, Y., Kwack, K., Kim, S.W., Kim, M.S., Park, H., and Lee, Z.H. (2002). Stabilization of hypoxia-inducible factor-1alpha is involved in the hypoxic stimuli-induced expression of vascular endothelial growth factor in osteoblastic cells. Cytokine 17, 14-27. https://doi.org/10.1006/cyto.2001.0985
  15. Kwon, T.G., Zhao, X., Yang, Q., Li, Y., Ge, C., Zhao, G., and Franceschi, R.T. (2011). Physical and functional interactions between Runx2 and HIF-1alpha induce vascular endothelial growth factor gene expression. J. Cell. Biochem. 112, 3582-3593. https://doi.org/10.1002/jcb.23289
  16. Lee, S.H., Che, X., Jeong, J.H., Choi, J.Y., Lee, Y.J., Lee, Y.H., Bae, S.C., and Lee, Y.M. (2012). Runx2 protein stabilizes hypoxia-inducible factor-1alpha through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J. Biol. Chem. 287, 14760-14771. https://doi.org/10.1074/jbc.M112.340232
  17. Loenarz, C., Coleman, M.L., Boleininger, A., Schierwater, B., Holland, P.W., Ratcliffe, P.J., and Schofield, C.J. (2011). The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12, 63-70. https://doi.org/10.1038/embor.2010.170
  18. Manoochehri Khoshinani, H., Afshar, S., and Najafi, R. (2016). Hypoxia: a double-edged sword in cancer therapy. Cancer Invest. 34, 536-545. https://doi.org/10.1080/07357907.2016.1245317
  19. Meimandi, M., Talebi Ardakani, M.R., Esmaeil Nejad, A., Yousefnejad, P., Saebi, K., and Tayeed, M.H. (2017). The effect of photodynamic therapy in the treatment of chronic periodontitis: a review of literature. J. Lasers Med. Sci. 8, S7-S11. https://doi.org/10.15171/jlms.2017.s2
  20. Menicanin, D., Mrozik, K.M., Wada, N., Marino, V., Shi, S., Bartold, P.M., and Gronthos, S. (2014). Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev. 23, 1001-1011. https://doi.org/10.1089/scd.2013.0490
  21. Mrozik, K.M., Wada, N., Marino, V., Richter, W., Shi, S., Wheeler, D.L., Gronthos, S., and Bartold, P.M. (2013). Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen. Med. 8, 711-723. https://doi.org/10.2217/rme.13.66
  22. Mu, S., Guo, S., Wang, X., Zhan, Y., Li, Y., Jiang, Y., Zhang, R., and Zhang, B. (2017). Effects of deferoxamine on the osteogenic differentiation of human periodontal ligament cells. Mol. Med. Rep. 16, 9579-9586. https://doi.org/10.3892/mmr.2017.7810
  23. Murakami, J., Ishii, M., Suehiro, F., Ishihata, K., Nakamura, N., and Nishimura, M. (2017). Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway. Biochem. Biophys. Res. Commun. 484, 710-718. https://doi.org/10.1016/j.bbrc.2017.02.001
  24. Ontiveros, C., Irwin, R., Wiseman, R.W., and McCabe, L.R. (2004). Hypoxia suppresses runx2 independent of modeled microgravity. J. Cell. Physiol. 200, 169-176. https://doi.org/10.1002/jcp.20054
  25. Oz, H.S. and Puleo, D.A. (2011). Animal models for periodontal disease. J. Biomed. Biotechnol. 2011, 754857.
  26. Park, J.H., Park, B.H., Kim, H.K., Park, T.S., and Baek, H.S. (2002). Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol. Cell. Endocrinol. 192, 197-203. https://doi.org/10.1016/S0303-7207(02)00036-9
  27. Prabhakar, N.R. and Semenza, G.L. (2015). Oxygen sensing and homeostasis. Physiology (Bethesda) 30, 340-348. https://doi.org/10.1152/physiol.00022.2015
  28. Rahman, S.U., Lee, M.S., Baek, J.H., Ryoo, H.M., and Woo, K.M. (2014). The prolyl hydroxylase inhibitor dimethyloxalylglycine enhances dentin sialophoshoprotein expression through VEGF-induced Runx2 stabilization. PLoS One 9, e112078. https://doi.org/10.1371/journal.pone.0112078
  29. Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., and Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149-155. https://doi.org/10.1016/S0140-6736(04)16627-0
  30. Sharma, S., Sapkota, D., Xue, Y., Rajthala, S., Yassin, M.A., Finne-Wistrand, A., and Mustafa, K. (2018). Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model. Stem Cell Res. Ther. 9, 23. https://doi.org/10.1186/s13287-018-0778-4
  31. Silva, N., Abusleme, L., Bravo, D., Dutzan, N., Garcia-Sesnich, J., Vernal, R., Hernandez, M., and Gamonal, J. (2015). Host response mechanisms in periodontal diseases. J. Appl. Oral Sci. 23, 329-355. https://doi.org/10.1590/1678-775720140259
  32. Smiley, C.J., Tracy, S.L., Abt, E., Michalowicz, B.S., John, M.T., Gunsolley, J., Cobb, C.M., Rossmann, J., Harrel, S.K., Forrest, J.L., et al. (2015). Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J. Am. Dent. Assoc. 146, 508-524.e5. https://doi.org/10.1016/j.adaj.2015.01.028
  33. Steinbrech, D.S., Mehrara, B.J., Saadeh, P.B., Greenwald, J.A., Spector, J.A., Gittes, G.K., and Longaker, M.T. (2000). VEGF expression in an osteoblastlike cell line is regulated by a hypoxia response mechanism. Am. J. Physiol. Cell Physiol. 278, C853-C860. https://doi.org/10.1152/ajpcell.2000.278.4.C853
  34. Vasconcelos, R.C., Costa Ade, L., Freitas Rde, A., Bezerra, B.A., Santos, B.R., Pinto, L.P., and Gurgel, B.C. (2016). Immunoexpression of HIF-1alpha and VEGF in periodontal disease and healthy gingival tissues. Braz. Dent. J. 27, 117-122. https://doi.org/10.1590/0103-6440201600533
  35. Vogel, C. and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227-232. https://doi.org/10.1038/nrg3185
  36. Wagegg, M., Gaber, T., Lohanatha, F.L., Hahne, M., Strehl, C., Fangradt, M., Tran, C.L., Schonbeck, K., Hoff, P., Ode, A., et al. (2012). Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One 7, e46483. https://doi.org/10.1371/journal.pone.0046483
  37. Wang, G.L. and Semenza, G.L. (1995). Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230-1237. https://doi.org/10.1074/jbc.270.3.1230
  38. Wu, Y., Cao, H., Yang, Y., Zhou, Y., Gu, Y., Zhao, X., Zhang, Y., Zhao, Z., Zhang, L., and Yin, J. (2013a). Effects of vascular endothelial cells on osteogenic differentiation of noncontact co-cultured periodontal ligament stem cells under hypoxia. J. Periodontal. Res. 48, 52-65. https://doi.org/10.1111/j.1600-0765.2012.01503.x
  39. Wu, Y., Yang, Y., Yang, P., Gu, Y., Zhao, Z., Tan, L., Zhao, L., Tang, T., and Li, Y. (2013b). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58, 1357-1368. https://doi.org/10.1016/j.archoralbio.2013.03.011
  40. Xu J, Li Z, Hou Y, and Fang W. (2015). Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am. J. Transl. Res. 7, 2527-2535.
  41. Zhang, Q.B., Zhang, Z.Q., Fang, S.L., Liu, Y.R., Jiang, G., and Li, K.F. (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13, 10204-10214. https://doi.org/10.4238/2014.December.4.15

Cited by

  1. Histone methyltransferase and drug resistance in cancers vol.39, pp.1, 2019, https://doi.org/10.1186/s13046-020-01682-z
  2. Effects of hypoxia environment on osteonecrosis of the femoral head in Sprague-Dawley rats vol.38, pp.6, 2020, https://doi.org/10.1007/s00774-020-01114-0
  3. Study on the Mechanism of Qigu Capsule in Upregulating NF-κB/HIF-1α Pathway to Improve the Quality of Bone Callus in Mice at Different Stages of Osteoporotic Fracture Healing vol.2021, 2021, https://doi.org/10.1155/2021/9943692
  4. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration vol.13, pp.11, 2021, https://doi.org/10.4252/wjsc.v13.i11.1625
  5. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration vol.13, pp.11, 2021, https://doi.org/10.4252/wjsc.v13.i11.1628
  6. Dental mesenchymal stromal/stem cells in different microenvironments- implications in regenerative therapy vol.13, pp.12, 2019, https://doi.org/10.4252/wjsc.v13.i12.1863