• 제목/요약/키워드: Cellular pathway

검색결과 929건 처리시간 0.029초

Effect of FTY-720 on Pulmonary Fibrosis in Mice via the TGF-β1 Signaling Pathway and Autophagy

  • Yuying Jin;Weidong Liu;Ge Gao;Yilan Song;Hanye Liu;Liangchang Li;Jiaxu Zhou;Guanghai Yan;Hong Cui
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.434-445
    • /
    • 2023
  • We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-β1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1β, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-β1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium

  • Dong Hyun Jo;Su Hyun Lee;Minsol Jeon;Chang Sik Cho;Da-Eun Kim;Hyunkyung Kim;Jeong Hun Kim
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.675-687
    • /
    • 2023
  • Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.

Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells

  • Xia, Xiaojing;Che, Yanyi;Gao, Yuanyuan;Zhao, Shuang;Ao, Changjin;Yang, Hongjian;Liu, Juxiong;Liu, Guowen;Han, Wenyu;Wang, Yuping;Lei, Liancheng
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.410-417
    • /
    • 2016
  • During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma ($IFN-{\gamma}$) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether $IFN-{\gamma}$ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether $IFN-{\gamma}$ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of $IFN-{\gamma}$ on milk synthesis in primary BMECs in vitro. The results showed that $IFN-{\gamma}$ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following $IFN-{\gamma}$ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that $IFN-{\gamma}$ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor $2{\alpha}$ ($eIF2{\alpha}$) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate $IFN-{\gamma}$-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the $IFN-{\gamma}$-induced decrease in milk quality but also a useful therapeutic approach for $IFN-{\gamma}$-associated breast diseases in other animals and humans.

Padina boryana, a brown alga from the Maldives: inhibition of α-MSH-stimulated melanogenesis via the activation of ERK in B16F10 cells

  • Jayawardena, Thilina U.;Sanjeewa, K.K. Asanka;Kim, Hyun-Soo;Lee, Hyo Geun;Wang, Lei;Lee, Dae-Sung;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제23권3호
    • /
    • pp.8.1-8.9
    • /
    • 2020
  • Background: The present study investigates the potent skin whitening ability of ethanol extract from the brown alga, Padina boryana (PBE) which was collected in the shores of Fulhadhoo Island, the Maldives, and its specific pathways of action. The effect of PBE which contains a rich amount of polyphenols was evaluated using B16F10 murine melanoma cells and provides insight to the underlying mechanisms with reference to the inhibition of melanin formation. Methods: Melanin synthesis and cellular tyrosinase inhibition were assessed in the α-MSH-stimulated melanocytes. Melanogenic pathway-related protein expressions were investigated via Western blotting. ERK 42/44 was particularly examined considering its involvement in the melanogenic pathway. Further, RT-qPCR techniques were involved in gene expression analysis. Results: PBE dose-dependently inhibited the cellular melanin synthesis and tyrosinase levels. Western blotting revealed the potential of PBE to downregulate microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 and protein-2 (TRP-1 and TRP-2). Moreover, results explained the phosphorylation of ERK was sustained via PBE and hence declined the ultimate melanin synthesis. Gene expression analysis reinforced the results obtained. Conclusions: The study provides substantial evidence to express the potential of PBE to inhibit B16F10 melanoma cell melanin synthesis. Concisely, results suggest the ability of PBE to be involved in medicinal and cosmeceutical applications.

Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway

  • Kim, Seul Gi;Sung, Jin Young;Kim, Jae-Ryong;Choi, Hyoung Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.69-79
    • /
    • 2020
  • Aging is one of the risk factors for the development of cardiovascular diseases. During the progression of cellular senescence, cells enter a state of irreversible growth arrest and display resistance to apoptosis. As a flavonoid, quercetin induces apoptosis in various cells. Accordingly, we investigated the relationship between quercetin-induced apoptosis and the inhibition of cellular senescence, and determined the mechanism of oxidative stress-induced vascular smooth muscle cell (VSMC) senescence. In cultured VSMCs, hydrogen peroxide (H2O2) dose-dependently induced senescence, which was associated with increased numbers of senescence-associated β-galactosidase-positive cells, decreased expression of SMP30, and activation of p53-p21 and p16 pathways. Along with senescence, expression of the anti-apoptotic protein Bcl-2 was observed to increase and the levels of proteins related to the apoptosis pathway were observed to decrease. Quercetin induced apoptosis through the activation of AMP-activated protein kinase. This action led to the alleviation of oxidative stress-induced VSMC senescence. Furthermore, the inhibition of AMPK activation with compound C and siRNA inhibited apoptosis and aggravated VSMC senescence by reversing p53-p21 and p16 pathways. These results suggest that senescent VSMCs are resistant to apoptosis and quercetin-induced apoptosis attenuated the oxidative stress-induced senescence through activation of AMPK. Therefore, induction of apoptosis by polyphenols such as quercetin may be worthy of attention for its anti-aging effects.

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells

  • Kwon, Young Hwi;Bishayee, Kausik;Rahman, Md. Ataur;Hong, Jae Seung;Lim, Soon-Sung;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.630-637
    • /
    • 2015
  • Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE ($10{\mu}g/ml$) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer.

Comparative proteomics and global genome-wide expression data implicate role of ARMC8 in lung cancer

  • Amin, Asif;Bukhari, Shoiab;Mokhdomi, Taseem A;Anjum, Naveed;Wafai, Asrar H;Wani, Zubair;Manzoor, Saima;Koul, Aabid M;Amin, Basit;Qurat-ul-Ain, Qurat-ul-Ain;Qazi, Hilal;Tyub, Sumira;Lone, Ghulam Nabi;Qadri, Raies A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3691-3696
    • /
    • 2015
  • Background: Cancer loci comprise heterogeneous cell populations with diverse cellular secretions. Therefore, disseminating cancer-specific or cancer-associated protein antigens from tissue lysates could only be marginally correct, if otherwise not validated against precise standards. Materials and Methods: In this study, 2DE proteomic profiles were examined from lysates of 13 lung-adenocarcinoma tissue samples and matched against the A549 cell line proteome. A549 matched-cancer-specific hits were analyzed and characterized by MALDI-TOF/MS. Results: Comparative analysis identified a total of 13 protein spots with differential expression. These proteins were found to be involved in critical cellular functions regulating pyrimidine metabolism, pentose phosphate pathway and integrin signaling. Gene ontology based analysis classified majority of protein hits responsible for metabolic processes. Among these, only a single non-predictive protein spot was found to be a cancer cell specific hit, identified as Armadillo repeat-containing protein 8 (ARMC8). Pathway reconstruction studies showed that ARMC8 lies at the centre of cancer metabolic pathways. Conclusions: The findings in this report are suggestive of a regulatory role of ARMC8 in control of proliferation and differentiation in lung adenocarcinomas.

Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells

  • Jang, Yeo Jin;Won, Jong Hoon;Back, Moon Jung;Fu, Zhicheng;Jang, Ji Min;Ha, Hae Chan;Hong, SeungBeom;Chang, Minsun;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.407-413
    • /
    • 2015
  • Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and $150{\mu}M$), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.

효모의 배양시기에 따른 인산화합물의 합성 및 효흡능에 미치는 탄수원의 영향 (Effect of the Carbon sources on the Synthesis of phosphate compounds and Respiratory activity of Yeast (saccharomyces uvarm) during growth phases)

  • 이종삼;조선의;이기성;신홍기;최영길
    • 미생물학회지
    • /
    • 제19권2호
    • /
    • pp.63-77
    • /
    • 1981
  • The growth rate of yeast population (Saccharomyces uvarum) cultivated in the Knopp's modified medium (plus various carbon sources) appeared the highest value when the Knopp's minimal medium was treated to 1.5% with disaccharide such as maltose and sucrose. Also the treatment of lactose and raffinose resulted in polulation growth as to the population size in case of maltose and sucrose. However, the gorwth of yeast was not occurred at all when a polysaccharide, such as inulin, was added as carbon source. The growth from of yeast population in Knopp's modified medium are characterized by the fact that log phase continued 100hrs after inoculation and that stationary state phase appeared in general 250hrs after inoculation. Applying the various carbon sources to respiration substrate for yeast cell, the respiration rate of yeast showed the highest value in treatment of maltose and followed in order of raffinose, lactose, glucose, and sucrose. Determined the amount of poly-phosphate and turn over pathway of poly-phosphate according to culture phase of yeast, it is revealed that the yeast synthesized 3 types of poly phosphate (poly-P A,B, and C) and postulated that turn over pathway of poly-phosphate as follows ; Inorganic phosphate is converted into each kind of polyphosphates, and then one part of poly-P-C is converted into poly-P-B, the rest poly-p-C and poly-P-B are converted into poly-P-A. The synthesized poly-phosphate is considered to have a role as energy pool utilizing to synthesis of cellular organic materials. Of the 13 carbon sources used in this experiment, the useful carbon sources for biosynthesis of poly-phosphate and cellular organic materials are confirmed as disaccharide (maltose and sucrose) as well as glucose. Protein synthesis in yeast cell showed the two peaks on 6th and 8th day after inoculation ; nucleic acid on 2nd day (48hrs), carbohydrates on 2nd day (48hrs), and phospholipid on 2nd and 8th day after inoculation, respectively.

  • PDF