• 제목/요약/키워드: Cellular behavior

검색결과 286건 처리시간 0.026초

굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동 (Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads)

  • 최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.

PIWI Proteins and piRNAs in the Nervous System

  • Kim, Kyung Won
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.828-835
    • /
    • 2019
  • PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.

火焰傳播速度測定에 關한 硏究 -層流火焰에 關하여- (A Study on the Flame Propagating Speed Measurement-For the Laminar Flame-)

  • 조경국;정인석;허원욱
    • 오토저널
    • /
    • 제1권1호
    • /
    • pp.28-41
    • /
    • 1979
  • Propane-Air premixed combustible gas was ignited by the conventional current break system inside the open combustion chamber under the atmospheric pressure and the room temperature to measure the flame propagating speed and the burning speed, also to elucidate the history of the propagating flame behavior and wall effects to flame shape by using Ion Gap Method and High Speed Schlieren Photography. The results obtained show that the maximum flame propagating speed and maximum burning speed are approximately 292 cm/sec and 36 cm/sec at the mixture ratio 4.6%, respectively. The cellular flame structures can be observable in the rich mixture region, moreover, the cellular structures become finer, with increasing the mixture strength.

  • PDF

진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어 (Behavior Control of Autonomous Mobile Robots using ECANS1)

  • 이동욱;정영준;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

인터넷 환경을 통한 생물학적 모델의 정량적 분석 (Quantitative Analysis of Biological Models under the Internet Environment)

  • 윤좌문;이동엽;조아연;이상엽;박선원
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.837-842
    • /
    • 2005
  • The computational modeling and simulation of complex biological systems are indispensable for new knowledge extraction from huge experimental data and ever growing vast amount of information in systems biology. Moreover, gathering and sharing of the existing information and newly-generated knowledge can speed up this research process. In this regard, several modeling projects have been undertaken for quantitatively analyzing the biological systems via the internet. They include Virtual Cell, JWS and OBIYagns. We also develop an integrated web-based environment, which facilitate investigation of dynamic behavior of cellular systems.

Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells

  • Tahermansouri, Hasan;Aryanfar, Yaser;Biazar, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.149-153
    • /
    • 2013
  • The chemical functionalization of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) by creatinine (MWCNT-Amide) and latter modification with 2-aminobenzophenone for producing 1-methyl-9-phenyl-1H-imidazo[4,5-b]quinolin-2-amine (MWCNT-quino) have been investigated. All products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. The interesting point is that MWCNT-quino can be homogeneously dispersed in dimethylformamide and to some extent in ethyl alcohol without sonication. Also, MTT assay was used to examine the behavior of cell proliferation after 48 h of cell culture experiments. Cellular results showed high toxicity of MWCNT-quino on the cancer cells. These functionalizations have been chosen due to active sites of carbonyl and methylene groups in MWCNT-Amide and the creating quinoline derivative on the MWCNTs for future application.

SPCA의 상태전이 행동분석 (Analysis of state transition behavior of SPCA)

  • 조성진;최언숙;황윤희;권민정;임지미
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.441-445
    • /
    • 2009
  • 본 논문에서는 Self-Programmable Cellular Automata(SPCA)를 기반으로 하여 최대주기수열을 생성하는 방법을 제안한다. 최근 긴 주기의 수열을 생성하기 위해서 CA의 차원을 증가시키거나, 상태전이 단계마다 각 셀의 전이규칙을 바꾸는 PCA를 사용하여 왔다. 본 논문에서는 셀의 전이 규칙에 역동성을 부여하기 위하여 각 셀의 상태전이 규칙을 각 시간 단계마다 바꿈으로써 더 긴 주기의 수열을 생성하고 생성된 수열의 랜덤성을 높이고자 한다.

  • PDF

Site-Specific Labeling of Proteins Using Unnatural Amino Acids

  • Lee, Kyung Jin;Kang, Deokhee;Park, Hee-Sung
    • Molecules and Cells
    • /
    • 제42권5호
    • /
    • pp.386-396
    • /
    • 2019
  • Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.

국소 천이규칙을 갖는 셀룰러 오토마타를 이용한 영상 첨예화 (Image Sharpening based on Cellular Automata with the Local Transition Rule)

  • 이석기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.502-504
    • /
    • 2010
  • 영상 강조를 위하여 새로운 셀룰러 오토마타의 천이규칙을 제안하고 그것을 이용한 첨예화 알고리즘을 제안한다. 천이 규칙은 순차적이고 병렬적인 움직임을 가지며 Lyapunov함수를 만족한다. 영상 첨예화는 셀룰러 오토마타의 고정된 점으로 수렴하는 동적인 특성을 이용하여 천이 규칙을 개발, 실험하였다. 영상에 대한 사전지식 없이 상대적으로 밝기값의 차이가 완만한 부분에 연산을 집중해 효율적인 첨예화된 영상을 얻을 수 있다.

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.