DOI QR코드

DOI QR Code

PIWI Proteins and piRNAs in the Nervous System

  • Kim, Kyung Won (Convergence Program of Material Science for Medicine and Pharmaceutics, Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
  • Received : 2019.10.24
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.

Keywords

References

  1. Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188. https://doi.org/10.1038/13810
  2. Amir, R.E. and Zoghbi, H.Y. (2000). Rett syndrome: methyl-CpG-binding protein 2 mutations and phenotype-genotype correlations. Am. J. Med. Genet. 97, 147-152. https://doi.org/10.1002/1096-8628(200022)97:2<147::AID-AJMG6>3.0.CO;2-O
  3. Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207. https://doi.org/10.1038/nature04916
  4. Aravin, A.A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785-799. https://doi.org/10.1016/j.molcel.2008.09.003
  5. Ashe, A., Sapetschnig, A., Weick, E.M., Mitchell, J., Bagijn, M.P., Cording, A.C., Doebley, A.L., Goldstein, L.D., Lehrbach, N.J., Le Pen, J., et al. (2012). piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88-99. https://doi.org/10.1016/j.cell.2012.06.018
  6. Bartsch, D., Ghirardi, M., Skehel, P.A., Karl, K.A., Herder, S.P., Chen, M., Bailey, C.H., and Kandel, E.R. (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into longterm functional and structural change. Cell 83, 979-992. https://doi.org/10.1016/0092-8674(95)90213-9
  7. Batista, P.J., Ruby, J.G., Claycomb, J.M., Chiang, R., Fahlgren, N., Kasschau, K.D., Chaves, D.A., Gu, W., Vasale, J.J., Duan, S., et al. (2008). PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67-78. https://doi.org/10.1016/j.molcel.2008.06.002
  8. Belancio, V.P., Hedges, D.J., and Deininger, P. (2008). Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18, 343-358. https://doi.org/10.1101/gr.5558208
  9. Bodea, G.O., McKelvey, E.G.Z., and Faulkner, G.J. (2018). Retrotransposoninduced mosaicism in the neural genome. Open Biol. 8, 180074. https://doi.org/10.1098/rsob.180074
  10. Boskovic, A. and Rando, O.J. (2018). Transgenerational epigenetic inheritance. Annu. Rev. Genet. 52, 21-41. https://doi.org/10.1146/annurev-genet-120417-031404
  11. Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103. https://doi.org/10.1016/j.cell.2007.01.043
  12. Burton, N.O., Furuta, T., Webster, A.K., Kaplan, R.E., Baugh, L.R., Arur, S., and Horvitz, H.R. (2017). Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat. Cell Biol. 19, 252-257. https://doi.org/10.1038/ncb3470
  13. Carmell, M.A., Girard, A., van de Kant, H.J., Bourc'his, D., Bestor, T.H., de Rooij, D.G., and Hannon, G.J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503-514. https://doi.org/10.1016/j.devcel.2007.03.001
  14. Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733-2742. https://doi.org/10.1101/gad.1026102
  15. Casier, K., Boivin, A., Carre, C., and Teysset, L. (2019a). Environmentallyinduced transgenerational epigenetic inheritance: implication of PIWI interacting RNAs. Cells 8, E1108.
  16. Casier, K., Delmarre, V., Gueguen, N., Hermant, C., Viode, E., Vaury, C., Ronsseray, S., Brasset, E., Teysset, L., and Boivin, A. (2019b). Environmentally-induced epigenetic conversion of a piRNA cluster. Elife 8, e39842. https://doi.org/10.7554/elife.39842
  17. Cassada, R.C. and Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326-342. https://doi.org/10.1016/0012-1606(75)90109-8
  18. Cerutti, L., Mian, N., and Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 25, 481-482. https://doi.org/10.1016/S0968-0004(00)01641-8
  19. Chen, L., Wang, Z., Ghosh-Roy, A., Hubert, T., Yan, D., O'Rourke, S., Bowerman, B., Wu, Z., Jin, Y., and Chisholm, A.D. (2011). Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71, 1043-1057. https://doi.org/10.1016/j.neuron.2011.07.009
  20. Czech, B., Munafo, M., Ciabrelli, F., Eastwood, E.L., Fabry, M.H., Kneuss, E., and Hannon, G.J. (2018). piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131-157. https://doi.org/10.1146/annurev-genet-120417-031441
  21. Das, P.P., Bagijn, M.P., Goldstein, L.D., Woolford, J.R., Lehrbach, N.J., Sapetschnig, A., Buhecha, H.R., Gilchrist, M.J., Howe, K.L., Stark, R., et al. (2008). Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79-90. https://doi.org/10.1016/j.molcel.2008.06.003
  22. De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P.N., Enright, A.J., and O'Carroll, D. (2011). The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259-263. https://doi.org/10.1038/nature10547
  23. de Vanssay, A., Bouge, A.L., Boivin, A., Hermant, C., Teysset, L., Delmarre, V., Antoniewski, C., and Ronsseray, S. (2012). Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature 490, 112-115. https://doi.org/10.1038/nature11416
  24. Deng, W. and Lin, H. (2002). Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819-830. https://doi.org/10.1016/S1534-5807(02)00165-X
  25. Dharap, A., Nakka, V.P., and Vemuganti, R. (2011). Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke 42, 1105-1109. https://doi.org/10.1161/STROKEAHA.110.598391
  26. Di Giacomo, M., Comazzetto, S., Saini, H., De Fazio, S., Carrieri, C., Morgan, M., Vasiliauskaite, L., Benes, V., Enright, A.J., and O'Carroll, D. (2013). Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell 50, 601-608. https://doi.org/10.1016/j.molcel.2013.04.026
  27. Dias, B.G. and Ressler, K.J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89-96. https://doi.org/10.1038/nn.3594
  28. Erwin, J.A., Marchetto, M.C., and Gage, F.H. (2014). Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15, 497-506. https://doi.org/10.1038/nrn3730
  29. Frost, B., Hemberg, M., Lewis, J., and Feany, M.B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366. https://doi.org/10.1038/nn.3639
  30. Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I.M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667-669. https://doi.org/10.1038/nn.3695
  31. Ghosheh, Y., Seridi, L., Ryu, T., Takahashi, H., Orlando, V., Carninci, P., and Ravasi, T. (2016). Characterization of piRNAs across postnatal development in mouse brain. Sci. Rep. 6, 25039. https://doi.org/10.1038/srep25039
  32. Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202. https://doi.org/10.1038/nature04917
  33. Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y., Kang, J.Y., Wang, X., Li, H., Hua, M.M., et al. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680-700. https://doi.org/10.1038/cr.2014.41
  34. Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., and Siomi, M.C. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 315, 1587-1590. https://doi.org/10.1126/science.1140494
  35. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., and Bastiani, M. (2009). Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802-806. https://doi.org/10.1126/science.1165527
  36. Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P.D. (2007). The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265-1272. https://doi.org/10.1016/j.cub.2007.06.030
  37. Houri-Ze'evi, L., Korem, Y., Sheftel, H., Faigenbloom, L., Toker, I.A., Dagan, Y., Awad, L., Degani, L., Alon, U., and Rechavi, O. (2016). A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165, 88-99. https://doi.org/10.1016/j.cell.2016.02.057
  38. Hu, P.J. (2007). Dauer. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), pp. 1-19.
  39. Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221. https://doi.org/10.1038/nature13908
  40. Jones, B.C., Wood, J.G., Chang, C., Tam, A.D., Franklin, M.J., Siegel, E.R., and Helfand, S.L. (2016). A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat. Commun. 7, 13856. https://doi.org/10.1038/ncomms13856
  41. Kim, I.V., Duncan, E.M., Ross, E.J., Gorbovytska, V., Nowotarski, S.H., Elliott, S.A., Sanchez Alvarado, A., and Kuhn, C.D. (2019). Planarians recruit piRNAs for mRNA turnover in adult stem cells. Genes Dev. 33, 1575-1590. https://doi.org/10.1101/gad.322776.118
  42. Kim, K.W., Tang, N.H., Andrusiak, M.G., Wu, Z., Chisholm, A.D., and Jin, Y. (2018a). A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron 97, 511-519.e6. https://doi.org/10.1016/j.neuron.2018.01.014
  43. Kim, K.W., Tang, N.H., Piggott, C.A., Andrusiak, M.G., Park, S., Zhu, M., Kurup, N., Cherra, S.J., 3rd, Wu, Z., Chisholm, A.D., et al. (2018b). Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for $NAD^{+}$ in axon regeneration. Elife 7, e39756. https://doi.org/10.7554/elife.39756
  44. Kirino, Y. and Mourelatos, Z. (2007). Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini. Nat. Struct. Mol. Biol. 14, 347-348. https://doi.org/10.1038/nsmb1218
  45. Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., et al. (2004). Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839-849. https://doi.org/10.1242/dev.00973
  46. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908-917. https://doi.org/10.1101/gad.1640708
  47. Lagier-Tourenne, C. and Cleveland, D.W. (2009). Rethinking ALS: the FUS about TDP-43. Cell 136, 1001-1004. https://doi.org/10.1016/j.cell.2009.03.006
  48. Le Thomas, A., Rogers, A.K., Webster, A., Marinov, G.K., Liao, S.E., Perkins, E.M., Hur, J.K., Aravin, A.A., and Toth, K.F. (2013). Piwi induces piRNAguided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390-399. https://doi.org/10.1101/gad.209841.112
  49. Lee, D., Yang, H., Kim, J., Brady, S., Zdraljevic, S., Zamanian, M., Kim, H., Paik, Y.K., Kruglyak, L., Andersen, E.C., et al. (2017). The genetic basis of natural variation in a phoretic behavior. Nat. Commun. 8, 273. https://doi.org/10.1038/s41467-017-00386-x
  50. Lee, E.J., Banerjee, S., Zhou, H., Jammalamadaka, A., Arcila, M., Manjunath, B.S., and Kosik, K.S. (2011a). Identification of piRNAs in the central nervous system. RNA 17, 1090-1099. https://doi.org/10.1261/rna.2565011
  51. Lee, H., Choi, M.K., Lee, D., Kim, H.S., Hwang, H., Kim, H., Park, S., Paik, Y.K., and Lee, J. (2011b). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat. Neurosci. 15, 107-112. https://doi.org/10.1038/nn.2975
  52. Leighton, L.J., Wei, W., Marshall, P.R., Ratnu, V.S., Li, X., Zajaczkowski, E.L., Spadaro, P.A., Khandelwal, N., Kumar, A., and Bredy, T.W. (2019). Disrupting the hippocampal Piwi pathway enhances contextual fear memory in mice. Neurobiol. Learn. Mem. 161, 202-209. https://doi.org/10.1016/j.nlm.2019.04.002
  53. Li, X.Z., Roy, C.K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B.W., Xu, J., Moore, M.J., Schimenti, J.C., Weng, Z., et al. (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67-81. https://doi.org/10.1016/j.molcel.2013.02.016
  54. Lin, H. and Spradling, A.C. (1997). A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463-2476. https://doi.org/10.1242/dev.124.12.2463
  55. Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 argonaute and TGF-beta mediate transgenerational learned pathogenic avoidance. Cell 177, 1827-1841.e12. https://doi.org/10.1016/j.cell.2019.05.024
  56. Muotri, A.R., Marchetto, M.C., Coufal, N.G., Oefner, R., Yeo, G., Nakashima, K., and Gage, F.H. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443-446. https://doi.org/10.1038/nature09544
  57. Nandi, S., Chandramohan, D., Fioriti, L., Melnick, A.M., Hebert, J.M., Mason, C.E., Rajasethupathy, P., and Kandel, E.R. (2016). Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 113, 12697-12702. https://doi.org/10.1073/pnas.1609287113
  58. Nix, P., Hammarlund, M., Hauth, L., Lachnit, M., Jorgensen, E.M., and Bastiani, M. (2014). Axon regeneration genes identified by RNAi screening in C. elegans. J. Neurosci. 34, 629-645. https://doi.org/10.1523/JNEUROSCI.3859-13.2014
  59. Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., and Suzuki, T. (2007). The 3' termini of mouse Piwi-interacting RNAs are 2'-O-methylated. Nat. Struct. Mol. Biol. 14, 349-350. https://doi.org/10.1038/nsmb1220
  60. Ozata, D.M., Gainetdinov, I., Zoch, A., O'Carroll, D., and Zamore, P.D. (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89-108. https://doi.org/10.1038/s41576-018-0073-3
  61. Parhad, S.S. and Theurkauf, W.E. (2019). Rapid evolution and conserved function of the piRNA pathway. Open Biol. 9, 180181. https://doi.org/10.1098/rsob.180181
  62. Peng, L., Zhang, F., Shang, R., Wang, X., Chen, J., Chou, J.J., Ma, J., Wu, L., and Huang, Y. (2018). Identification of substrates of the small RNA methyltransferase Hen1 in mouse spermatogonial stem cells and analysis of its methyl-transfer domain. J. Biol. Chem. 293, 9981-9994. https://doi.org/10.1074/jbc.RA117.000837
  63. Perera, B.P.U., Tsai, Z.T., Colwell, M.L., Jones, T.R., Goodrich, J.M., Wang, K., Sartor, M.A., Faulk, C., and Dolinoy, D.C. (2019). Somatic expression of piRNA and associated machinery in the mouse identifies short, tissuespecific piRNA. Epigenetics 14, 504-521. https://doi.org/10.1080/15592294.2019.1600389
  64. Perrat, P.N., DasGupta, S., Wang, J., Theurkauf, W., Weng, Z., Rosbash, M., and Waddell, S. (2013). Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340, 91-95. https://doi.org/10.1126/science.1231965
  65. Phay, M., Kim, H.H., and Yoo, S. (2018). Analysis of piRNA-like small noncoding RNAs present in axons of adult sensory neurons. Mol. Neurobiol. 55, 483-494. https://doi.org/10.1007/s12035-016-0340-2
  66. Posner, R., Toker, I.A., Antonova, O., Star, E., Anava, S., Azmon, E., Hendricks, M., Bracha, S., Gingold, H., and Rechavi, O. (2019). Neuronal small RNAs control behavior transgenerationally. Cell 177, 1814-1826.e15. https://doi.org/10.1016/j.cell.2019.04.029
  67. Qiu, W., Guo, X., Lin, X., Yang, Q., Zhang, W., Zhang, Y., Zuo, L., Zhu, Y., Li, C.R., Ma, C., et al. (2017). Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease. Neurobiol. Aging 57, 170-177. https://doi.org/10.1016/j.neurobiolaging.2017.05.020
  68. Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693-707. https://doi.org/10.1016/j.cell.2012.02.057
  69. Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287. https://doi.org/10.1016/j.cell.2014.06.020
  70. Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Sanchez Alvarado, A. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327-1330. https://doi.org/10.1126/science.1116110
  71. Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., Funaya, C., Antony, C., Sachidanandam, R., and Pillai, R.S. (2011). Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264-267. https://doi.org/10.1038/nature10672
  72. Rojas-Rios, P. and Simonelig, M. (2018). piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145, dev161786. https://doi.org/10.1242/dev.161786
  73. Rouget, C., Papin, C., Boureux, A., Meunier, A.C., Franco, B., Robine, N., Lai, E.C., Pelisson, A., and Simonelig, M. (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128-1132. https://doi.org/10.1038/nature09465
  74. Roy, J., Sarkar, A., Parida, S., Ghosh, Z., and Mallick, B. (2017). Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Mol. Biosyst. 13, 565-576. https://doi.org/10.1039/C6MB00699J
  75. Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207. https://doi.org/10.1016/j.cell.2006.10.040
  76. Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., and Siomi, M.C. (2007). Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. Genes Dev. 21, 1603-1608. https://doi.org/10.1101/gad.1563607
  77. Sapetschnig, A., Sarkies, P., Lehrbach, N.J., and Miska, E.A. (2015). Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078. https://doi.org/10.1371/journal.pgen.1005078
  78. Saxena, A., Tang, D., and Carninci, P. (2012). piRNAs warrant investigation in Rett syndrome: an omics perspective. Dis. Markers 33, 261-275. https://doi.org/10.1155/2012/396737
  79. Shen, E.Z., Chen, H., Ozturk, A.R., Tu, S., Shirayama, M., Tang, W., Ding, Y.H., Dai, S.Y., Weng, Z., and Mello, C.C. (2018). Identification of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegans germline. Cell 172, 937-951.e18. https://doi.org/10.1016/j.cell.2018.02.002
  80. Shirayama, M., Seth, M., Lee, H.C., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. (2012). piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65-77. https://doi.org/10.1016/j.cell.2012.06.015
  81. Sienski, G., Donertas, D., and Brennecke, J. (2012). Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964-980. https://doi.org/10.1016/j.cell.2012.10.040
  82. Sohn, E.J., Jo, Y.R., and Park, H.T. (2019). Downregulation MIWI-piRNA regulates the migration of Schwann cells in peripheral nerve injury. Biochem. Biophys. Res. Commun. 519, 605-612. https://doi.org/10.1016/j.bbrc.2019.09.008
  83. Stein, C.B., Genzor, P., Mitra, S., Elchert, A.R., Ipsaro, J.J., Benner, L., Sobti, S., Su, Y., Hammell, M., Joshua-Tor, L., et al. (2019). Decoding the 5' nucleotide bias of PIWI-interacting RNAs. Nat. Commun. 10, 828. https://doi.org/10.1038/s41467-019-08803-z
  84. Sun, W., Samimi, H., Gamez, M., Zare, H., and Frost, B. (2018). Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038-1048. https://doi.org/10.1038/s41593-018-0194-1
  85. Tabara, H., Yigit, E., Siomi, H., and Mello, C.C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861-871. https://doi.org/10.1016/S0092-8674(02)00793-6
  86. Tang, W., Tu, S., Lee, H.C., Weng, Z., and Mello, C.C. (2016). The RNase PARN-1 trims piRNA 3' ends to promote transcriptome surveillance in C. elegans. Cell 164, 974-984. https://doi.org/10.1016/j.cell.2016.02.008
  87. Tolia, N.H. and Joshua-Tor, L. (2007). Slicer and the argonautes. Nat. Chem. Biol. 3, 36-43. https://doi.org/10.1038/nchembio848
  88. Toth, K.F., Pezic, D., Stuwe, E., and Webster, A. (2016). The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51-77. https://doi.org/10.1007/978-94-017-7417-8_4
  89. Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320-324. https://doi.org/10.1126/science.1129333
  90. Wakisaka, K.T., Tanaka, R., Hirashima, T., Muraoka, Y., Azuma, Y., Yoshida, H., Tokuda, T., Asada, S., Suda, K., Ichiyanagi, K., et al. (2019). Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. Brain Res. 1708, 207-219. https://doi.org/10.1016/j.brainres.2018.12.028
  91. Wang, G. and Reinke, V. (2008). A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18, 861-867. https://doi.org/10.1016/j.cub.2008.05.009
  92. Wang, J., Zhang, P., Lu, Y., Li, Y., Zheng, Y., Kan, Y., Chen, R., and He, S. (2019). piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175-D180. https://doi.org/10.1093/nar/gky1043
  93. Weick, E.M. and Miska, E.A. (2014). piRNAs: from biogenesis to function. Development 141, 3458-3471. https://doi.org/10.1242/dev.094037
  94. Weick, E.M., Sarkies, P., Silva, N., Chen, R.A., Moss, S.M., Cording, A.C., Ahringer, J., Martinez-Perez, E., and Miska, E.A. (2014). PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev. 28, 783-796. https://doi.org/10.1101/gad.238105.114
  95. Yu, T., Koppetsch, B.S., Pagliarani, S., Johnston, S., Silverstein, N.J., Luban, J., Chappell, K., Weng, Z., and Theurkauf, W.E. (2019). The piRNA response to retroviral invasion of the Koala genome. Cell 179, 632-643.e12. https://doi.org/10.1016/j.cell.2019.09.002
  96. Zhang, D., Tu, S., Stubna, M., Wu, W.S., Huang, W.C., Weng, Z., and Lee, H.C. (2018). The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359, 587-592. https://doi.org/10.1126/science.aao2840
  97. Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-binding proteins in amyotrophic lateral sclerosis. Mol. Cells 41, 818-829. https://doi.org/10.14348/molcells.2018.0243
  98. Zhao, P.P., Yao, M.J., Chang, S.Y., Gou, L.T., Liu, M.F., Qiu, Z.L., and Yuan, X.B. (2015). Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins. Mol. Brain 8, 39. https://doi.org/10.1186/s13041-015-0131-0

Cited by

  1. PiWi RNA in Neurodevelopment and Neurodegenerative Disorders vol.14, 2019, https://doi.org/10.2174/1874467214666210629164535
  2. The Regulation and Role of piRNAs and PIWI Proteins in Cancer vol.9, pp.7, 2019, https://doi.org/10.3390/pr9071208
  3. Candidate L ‐methionine target piRNA regulatory networks analysis response to cocaine‐conditioned place preference in mice vol.11, pp.8, 2019, https://doi.org/10.1002/brb3.2272
  4. Factors Regulating the Activity of LINE1 Retrotransposons vol.12, pp.10, 2019, https://doi.org/10.3390/genes12101562
  5. Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves vol.18, pp.suppl2, 2019, https://doi.org/10.1080/15476286.2021.2000792
  6. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration vol.99, pp.12, 2019, https://doi.org/10.1007/s00109-021-02132-9
  7. Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system vol.5, pp.3, 2019, https://doi.org/10.26508/lsa.202101240