• Title/Summary/Keyword: Cellular Autolysis

Search Result 9, Processing Time 0.028 seconds

Cellular Autolysis of Clostridium butyricum ID-113 (Clostridium butyricum ID의 자가분해)

  • Kwag, Jong-Hui;Lee, Se-Yong;Kim, Tae-Han;Lee, Jung-Chi
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 1989
  • The optimum conditions for cellular autolysis in Clostridium butyricum ID-113 have been investigated. Cellular autolysis was optimal at pH 1.0 in 0.05 M potassium phosphate buffer and at 37$^{\circ}C$. The rate of cellular autolysis depended on the age of culture. The most rapid cellular autolysis occurred in the cells of mid-exponentially growing cultures, but cellular autolysis decreased sharply when the cultures entered the stationary phase. A growing culture of Cl. butyricum ID-113 was induced to autolyze and lost its turbidity spontaneously in the hypertonic NaCl, sucrose, or glucose medium. The autolytic enzyme activity was found In the autolysate of cells and the supernatant of the culture.

  • PDF

Characteristics of Morphological and Physiological Changes during the Autolysis Process of Saccharomyces cerevisiae FX-2

  • Li, Xiao;Shi, Xiaodan;Zou, Man;Luo, Yudi;Tan, Yali;Wu, Yexu;Chen, Lin;Li, Pei
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2015
  • In this paper, the autolysis process of Saccharomyces cerevisiae FX-2 (S. cerevisiae FX-2) via, a variety of endogenous enzyme, was investigated systematically by analyzing changes in physicochemical parameters in autolysate, surface morphology and the internal structure of the yeast cells. As an explicit conclusion, the arisen autolysis depended on the pH and the optimal pH was found to be 5.5. Based on the experimental data and the characteristics of mycelia morphology, a hypothesis is put forward that simple proteins in yeast vacuolar are firstly degraded for utilization, and then more membrane-bound proteins are hydrolyzed to release hydrolytic enzymes, which arouse an enzymatic reaction to induce the collapse of the cell wall into the cytoplasm.

Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells

  • Kita, Shunbun;Shimomura, Iichiro
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.771-780
    • /
    • 2022
  • The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.

Development of a Simple Cell Lysis Method for Recombinant DNA Using Bacteriophage Lambda Lysis Genes

  • Jang, Bo-Yun;Jung, Yun-A;Lim, Dong-Bin
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.593-596
    • /
    • 2007
  • In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification.

Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium

  • Asghari, S. Mohsen;Khajeh, Khosro;Dalfard, Arastoo Badoei;Pazhang, Mohammad;Karbalaei-Heidari, Hamid Reza
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.665-668
    • /
    • 2011
  • In order to clarify the impact of Ca-binding sites (Ca1 and 2) on the conformational stability of neutral proteases (NPs), we have analyzed the thermal, pH and organic solvent stability of a NP variant, V189P/A195E/G203D/A268E (Q-mutant), from Salinovibrio proteolyticus. This mutant has shown to bind calcium more tightly than the wild-type (WT) at Ca1 and to possess Ca2. Q-mutant was resisted against autolysis, thermoinactivation and pH denaturation in a Ca-dependent manner and exhibited better activity in organic solvents compared to the WT enzyme. These results imply that Ca1 and Ca2 are important for the conformational stability of NPs.

Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction

  • Eun Seong Hwang;Seon Beom Song
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.655-663
    • /
    • 2023
  • Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.

Inhibition of Autolysis by Lipase LipA in Streptococcus pneumoniae Sepsis

  • Kim, Gyu-Lee;Luong, Truc Thanh;Park, Sang-Sang;Lee, Seungyeop;Ha, Jung Ah;Nguyen, Cuong Thach;Ahn, Ji Hye;Park, Ki-Tae;Paik, Man-Jeong;Pyo, Suhkneung;Briles, David E.;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.935-944
    • /
    • 2017
  • More than 50% of sepsis cases are associated with pneumonia. Sepsis is caused by infiltration of bacteria into the blood via inflammation, which is triggered by the release of cell wall components following lysis. However, the regulatory mechanism of lysis during infection is not well defined. Mice were infected with Streptococcus pneumoniae D39 wild-type (WT) and lipase mutant (${\Delta}lipA$) intranasally (pneumonia model) or intraperitoneally (sepsis model), and survival rate and pneumococcal colonization were determined. LipA and autolysin (LytA) levels were determined by qPCR and western blotting. S. pneumoniae Spd_1447 in the D39 (type 2) strain was identified as a lipase (LipA). In the sepsis model, but not in the pneumonia model, mice infected with the ${\Delta}lipA$ displayed higher mortality rates than did the D39 WT-infected mice. Treatment of pneumococci with serum induced LipA expression at both the mRNA and protein levels. In the presence of serum, the ${\Delta}lipA$ displayed faster lysis rates and higher LytA expression than the WT, both in vitro and in vivo. These results indicate that a pneumococcal lipase (LipA) represses autolysis via inhibition of LytA in a sepsis model.

Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain

  • Park, Sang-Sang;Lee, Sangho;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • Vancomycin response regulator (VncR) is a pneumococcal response regulator of the VncRS two-component signal transduction system (TCS) of Streptococcus pneumoniae. VncRS regulates bacterial autolysis and vancomycin resistance. VncR contains two different functional domains, the N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR C-terminal DNA binding domain (VncRc) structure using a crystallization approach. Crystallization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P212121. The crystal unit-cell parameters were a = 25.71 Å, b = 52.97 Å, and c = 60.61 Å. The structure of VncRc had a helix-turn-helix motif highly similar to the response regulator PhoB of Escherichia coli. In isothermal titration calorimetry and size exclusion chromatography results, VncR formed a complex with VncS, a sensor histidine kinase of pneumococcal TCS. Determination of VncR structure will provide insight into the mechanism by how VncR binds to target genes.

Purification and Characterization of an Alkaline Protease from Bacillus licheniformis NS70

  • Kim, Young-Ok;Lee, Jung-Kee;Kim, Hyung-Kwoun;Park, Young-Seo;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • A bacterial strain NS70 producing an alkaline protease was isolated from soil samples taken near a hot spring and identified as Bacillus licheniformis by its morphological and physiological properties and cellular fatty acid analysis. The isolated alkaline protease was purified by ammonium sulfate fractionation, DEAE-, CM-, and Phenyl-Sepharose column chromatography. The molecular weight of the purified enzyme was estimated to be 32, 000 Da by sodium dodecylsulfate polyacrylamide gel electrophoresis. Its optimal pH and temperature for proteolytic activity against Hammarsten casein were 12 and $65^{\circ}C$, respectively. The enzyme was stable at alkaline pH range from 6.0 to 12.0, and fairly stable up to $65^{\circ}C$. The enzyme was inhibited by phenylmethylsulfonyl fluoride but not by EDTA and N-ethylmaleimide indicating that the enzyme is serine protease. Enzyme activity was markedly inhibited by $Hg^{2+}$ and $Cu^{2+}$. Autolytic phenomena were observed on purified protease NS70 but autolysis was reduced by the addtion of $Ca^{2+}$ ion or bovine serum albumin.

  • PDF