• Title/Summary/Keyword: Cell printing

Search Result 219, Processing Time 0.025 seconds

Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell (결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발)

  • Eom, Taewoo;Lee, Sang Hyeop;Song, Chan Moon;Park, Sang Yong;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.

A study on development of large area/mass production system for flexible solar cell (유연태양전지 대면적/대량 생산시스템 개발에 관한 연구)

  • Bae, Sungwoo;Jo, Jeongdai;Kim, Dongsoo;Yoo, Seongyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resource is being depleted. Especially, in order to solve like this problem, the study of solar cell manufacturing systems are being extensively researched such as vacuum process. But the major fault of the vacuum process are its expensive production price. On the order hand, Roll-to-roll printing system, the new technology of solar cell manufacturing, has low production price compare with the vacuum process. Also roll-to-roll printing system can decrease the 95% of waste water and 99.9% of harmful gasses than the vacuum process. So we addressed the roll to roll printing system for the flexible solar cell by using printing technology. This roll-to-roll printing system is comprised of various modules, such as web handling module, fine pattern printing module, dry/curing module, uniform coating module and laminating module etc.

  • PDF

Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes (3D 프린팅 공정을 이용한 고체 산화물 연료전지 연구 동향)

  • MASAUD, ZUBAIR;KHAN, MUHAMMAD ZUBAIR;HUSSAIN, AMJAD;ISHFAQ, HAFIZ AHMAD;SONG, RAK-HYUN;LEE, SEUNG-BOK;JOH, DONG WOO;LIM, TAK-HYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.11-40
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.

Screen Printing Method on Crystalline Silicon Solar Cells : A Review (결정질 실리콘 태양전지에 적용될 스크린 프린팅 기술 개발 동향 : 리뷰)

  • Jeon, Young Woo;Jang, Min Kyu;Kim, Min Je;Yi, Jun Sin;Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.90-94
    • /
    • 2022
  • The screen-printing method is the most mature solar cell fabrication technology, which has the advantage of being faster and simpler process than other printing technology. A front metallization printed through screen printing influences the efficiency and manufacturing cost of solar cell. Recent technology development of crystalline silicon solar cell is proceeding to reduce the manufacturing cost while improving the efficiency. Therefore, screen printing requires process development to reduce a line width of an electrode and decrease shading area. In this paper, we will discuss the development trend and prospects of screen-printing metallization using metal paste, which is currently used in manufacturing commercial crystalline silicon solar cells.

A study on the $ALU^+$ crystalline solar cell characteristics affected by counts of rear side screen printings ($ALU^+$를 이용한 결정질 태양전지 후면 전극 Screen Printing 횟수에 따른 특성)

  • Choi, Jaewoo;Kim, Hyunyup;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.123.1-123.1
    • /
    • 2011
  • 기존의 p-type 태양전지 공정과 유사한 공정으로 제작되는 n-type $ALU^+$태양전지는 후면에 Al을 screen printing하여 emitter층을 형성한 구조이다. screen printing은 공정의 단순화와 제조 단가의 저비용으로 인해, metalization 공정에서 많이 쓰이고 있다. 본 연구에서는 양산 가능한 n-type $ALU^+$태양전지 제작을 위해, 후면 Al emitter 층을 single, dobule, triple로 변경하며 Al의 양을 가변하였고, 그에 따른 특성의 변화를 연구하였다. screen printing 횟수가 변경된 후면 Al emitter 층의 특성은 DIV와 LIV 측정을 통해 분석하였다. 실험 결과 Al을 single printing 하였을 때보다, double, triple printing을 통하여 Al의 양을 증가하였을 때, DIV 데이터에서 직렬저항(Rs)가 $24.44{\Omega}/cm^2$에서 $0.31{\Omega}/cm^2$으로 감소하였고, 단락전류(Jsc)는 1.26mA/$cm^2$에서 37.7mA/$cm^2$으로 약 300% 증가한 것을 확인할 수 있었다. 프린팅 횟수에 따른 LIV 데이터의 Fill Factor를 분석하게 되면, double printing이 64.35%로 54.75%의 triple printing보다 약 1.17배 더 향상된 것으로 확인하였다. 이러한 결과를 바탕으로 후면 Al emitter 형성시에 Al의 양이 적절하지 못한 이유로, Al emitter가 제대로 형성되지 못하거나 과하게 형성되면, 태양전지 내부에 누설 저항의 변화와 누설 전류의 증가로 인해, 단락전류(Jsc)와 Fill Factor 감소의 주요 원인이 된다는 것을 확인할 수 있었다.

  • PDF

Optimization of Screen Printing Process in Crystalline Silicon Solar Cell Fabrication (결정질 실리콘 태양전지의 스크린 프린팅 공정 최적화 연구)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Choi, Sung-Jin;Lim, Kee-Joe;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.116-120
    • /
    • 2011
  • In this paper, we studied the optimization of the screen pringting method for crystalline silicon solar cell fabrication. The 156 * 156 mm2 p-type silicon wafers with $200{\mu}m$ thickness and $0.5-3{\Omega}cm$ resistivity were used after texturing, doping, and passivation. Screen printing method is a common way to make the c-Si solar cell with low-cost and high-efficiency. We studied the optimized condition for screen printing with crystalline silicon solar cell as changing the printing direction (finger line or bus bar), finger width, and mesh angle. As a result, the screen printing with finger line direction showed higher finger height and better conversion efficiency, compared with one with bus bar direction. The experiments with various finger widths and mesh angles were also carried out. The characteristics of solar cells was obtained by measuring light current-voltage, optical microscope and electroluminescence.

  • PDF

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

Three-dimensional Bio-printing Technique: Trend and Potential for High Volume Implantable Tissue Generation

  • Duong, Van-Thuy;Kim, Jong Pal;Kim, Kwangsoo;Ko, Hyoungho;Hwang, Chang Ho;Koo, Kyo-in
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.188-207
    • /
    • 2018
  • Recently, three-dimensional (3D) printing of biological tissues and organ has become an attractive interdisciplinary research topic that combines a broad range of fields including engineering, biomaterials science, cell biology, physics, and medicine. The 3D bioprinting can be used to produce complex tissue engineering scaffolds based on computer designs obtained from patient-specific anatomical data. It is a powerful tool for building structures by printing cells together with matrix materials and biochemical factors in spatially predefined positions within confined 3D structures. In the field of the 3D bioprinting, three major categories of the 3D bioprinting include the stereolithography-based, inkjet-based, and dispensing-based bioprinting. Some of them have made significant process. Each technique has its own advantages and limitations. Compared with non-biological printing, the 3D bioprinting should consider additional complexities: biocompatibility, degradability of printing materials, cell types, cell growth, cell viability, and cell proliferation factors. Numerous 3D bioprinting technologies have been proposed, and some of them have been making great progress in printing several tissues including multilayered skin, cartilaginous structures, bone, vasculature even heart and liver. This review summarizes basic principles and key aspects of some frequently utilized printing technologies, and introduces current challenges, and prospects in the 3D bioprinting.

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • Jeong, Myeong-Sang;Jang, Hyo-Sik;Song, Hui-Eun;Gang, Min-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF

Characteristics of Fabricated MEA(Membrane Electrode Assembly) on Polymer Electrolyte Membrane Fuel Cell Made by the Screen Printing Method (스크린 프린팅법을 이용하여 제조된 고분자 전해질 연료전지에서 MEA(조합 막 전극)의 특성)

  • 임재욱;최대규;류호진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.27-30
    • /
    • 2003
  • The effect of fabrication method of catalytic layer on electrode performance has been investigated. Brush, spray gun and screen printer were used as fabrication tool and catalytic layers were formed by several methods in screen printing. Direct screen printing on polymer membrane, screen printing on carbon paper, and their combined method were applied. In the electrode fabricated by the screen printing method, Pt loading of Pt/C catalysts could be cut down to 50%, compared with results by the brushing and spraying methods. The best result of electrode was obtained as 0.6 V, at 1 A/$\textrm{cm}^2$ when catalytic layer was formed by the combined way.

  • PDF