DOI QR코드

DOI QR Code

Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes

3D 프린팅 공정을 이용한 고체 산화물 연료전지 연구 동향

  • MASAUD, ZUBAIR (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • KHAN, MUHAMMAD ZUBAIR (Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology) ;
  • HUSSAIN, AMJAD (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • ISHFAQ, HAFIZ AHMAD (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • SONG, RAK-HYUN (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • LEE, SEUNG-BOK (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • JOH, DONG WOO (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • LIM, TAK-HYOUNG (Fuel Cell Laboratory, Korea Institute of Energy Research)
  • Received : 2021.01.05
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.

Keywords

References

  1. A. Kirubakaran, S. Jain, and R. K. Nema, "A review on fuel cell technologies and power electronic interface", Renew. Sustain. Energy Rev., Vol. 13, No. 9, 2009, pp. 2430-2440, doi: https://doi.org/10.1016/j.rser.2009.04.004.
  2. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: a review", Prog. Mater. Sci., Vol. 72, 2015, pp. 141-337, doi: https://doi.org/10.1016/j.pmatsci.2015.01.001.
  3. V. S. Bagotsky, "Solid‐oxide fuel cells", Fuel Cells, 2008, pp. 135-160, doi: https://doi.org/10.1002/9780470432204.ch8.
  4. N. M. Sammes, Y. Du, and R. Bove, "Design and fabrication of a 100 W anode supported micro-tubular SOFC stack", J. Power Sources, Vol. 145, No. 2, 2005, pp. 428-434, doi: https://doi.org/10.1016/j.jpowsour.2005.01.079.
  5. A. Chroneos, B. Yildiz, A. Tarancon, D. Parfitt, and J. A. Kilner, "Oxygen diffusion in solid oxidefuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations ", Energy Environ. Sci., Vol. 4, No. 8, 2011, pp. 2774-2789, doi: https://doi.org/10.1039/c0ee00717j.
  6. S. P. S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review", Ceram. Int., Vol. 22, No. 3, 1996, pp. 257-265, doi: https://doi.org/10.1016/0272-8842(95)00101-8.
  7. R. M. Ormerod, "Solid oxide fuel cells", Chem. Soc. Rev., Vol. 32, No. 1, 2003, pp. 17-28, doi: https://doi.org/10.1039/b105764m.
  8. N. Q. Minh, "Ceramic fuel cells", Vol. 76, No. 3, 1993, pp. 563-588, doi: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x.
  9. N. Q. Minh, "Solid oxide fuel cell technology-features and applications", Solid State Ionics, Vol. 174, No. 1-4, 2004, pp. 271-277, doi: https://doi.org/10.1016/j.ssi.2004.07.042.
  10. C. Hatchwell, N. M. Sammes, and I. W. M. Brown, "Fabrication and properties of Ce0.8Gd0.2O1.9 electrolyte-based tubular solid oxide fuel cells", Solid State Ionics, Vol. 126, No. 3-4, 1999, pp. 201-208, doi: https://doi.org/10.1016/S0167-2738(99)00232-5.
  11. F. Tietz, H. P. Buchkremer, and D. Stover, "Components manufacturing for solid oxide fuel cells", Solid State Ionics, Vol. 152-153, 2002, pp. 373-381, doi: https://doi.org/10.1016/S0167-2738(02)00344-2.
  12. S. C. Singhal, "Solid oxide fuel cells for stationary, mobile, and military applications", Solid State Ionics, Vol. 152-153, 2002, pp. 405-410, doi: https://doi.org/10.1016/S0167-2738(02)00349-1.
  13. Y. Du, N. M. Sammes, G. A. Tompsett, D. Zhang, J. Swan, and M. Bowden, "Extruded Tubular Strontium- and MagnesiumDoped Lanthanum Gallate, Gadolinium-Doped Ceria, an d Yttria-Stabilized Zirconia Electrolyets: Mechanical and Thermal Properties", J. Electrochem. Soc., Vol. 150, No. 1, 2003, pp. A74, doi: https://doi.org/10.1149/1.1525268.
  14. L. S. Mahmud, A. Muchtar, and M. R. Somalu, "Challenges in fabricating planar solid oxide fuel cells: A review", Renew. Sustain. Energy Rev., Vol. 72, 2017, pp. 105-116, doi: https://doi.org/10.1016/j.rser.2017.01.019.
  15. T. L. Cable and S. W. Sofie, "A symmetrical, planar SOFC design for NASA's high specific power density requirements", J. Power Sources, Vol. 174, No. 1, 2007, pp. 221-227, doi: https://doi.org/10.1016/j.jpowsour.2007.08.110.
  16. N. Sugita, M. Watanabe, Y. Sano, M. Terashima, and M. Mitsuishi, "Cutting tool for bone machining to carry out roughing and finishing in a single pass", Proc. 6th Int. Conf. Lead. Edge Manuf. 21st Century, LEM 2011, Vol. 297, 2011, pp. 103-112, doi: https://doi.org/10.1299/jsmelem.2011.6._3285-1_.
  17. B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, W. B. Im, and D. R. Shin, "La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 37, No. 5, 2012, pp. 4319-4327, doi: https://doi.org/10.1016/j.ijhydene.2011.10.125.
  18. F. Snijkers, A. de Wilde, S. Mullens, and J. Luyten, "Aqueous tape casting of yttria stabilised zirconia using natural product binder", J. Eur. Ceram. Soc., Vol. 24, No. 6, 2004, pp. 1107-1110, doi: https://doi.org/10.1016/S0955-2219(03)00388-1.
  19. D. Montinaro, V. M. Sglavo, M. Bertoldi, T. Zandonella, A. Arico, M. Lo Faro, and V. Antonucci, "Tape casting fabrication and co-sintering of solid oxide "half cells" with a cathode-electrolyte porous interface", Solid State Ionics, Vol. 177, No. 19-25, 2006, pp. 2093-2097, doi: https://doi.org/10.1016/j.ssi.2006.01.016.
  20. C. Fu, S. H. Chan, Q. Liu, X. Ge, and G. Pasciak, "Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell", Int. J. Hydrogen Energy, Vol. 35, No. 1, 2010, pp. 301-307, doi: https://doi.org/10.1016/j.ijhydene.2009.09.101.
  21. W. S. Jang, S. H. Hyun, and S. G. Kim, "Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for lowtemperature SOFC", J. Mater. Sci., Vol. 37, No. 12, 2002, pp. 2535-2541, doi: https://doi.org/10.1023/A:1015451910081.
  22. A. Sanson, P. Pinasco, and E. Roncari, "Influence of pore formers on slurry composition and microstructure of tape cast supporting ano des for SO FC s", J. Eur. Ceram. Soc., Vol. 28, No. 6, 2008, pp. 1221-1226, doi: https://doi.org/10.1016/j.jeurceramsoc.2007.10.001.
  23. H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, "Characteristics of SOFC single cells with anode active layer via tape casting and co-firing", Int. J. Hydrogen Energy, Vol. 33, No. 11, 2008, pp. 2826-2833, doi: https://doi.org/10.1016/j.ijhydene.2008.03.024.
  24. Z. Wang, J. Qian, J. Cao, S. Wang, and T. Wen, "A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)", J. Alloys Compd., Vol. 437, No. 1-2, 2007, pp. 264-268, doi: https://doi.org/10.1016/j.jallcom.2006.07.110.
  25. J. H. Song, S. I. Park, J. H. Lee, and H. S. Kim, "Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC", J. Mater. Process. Technol., Vol. 198, No. 1-3, 2008, pp. 414-418, doi: https://doi.org/10.1016/j.jmatprotec.2007.07.030.
  26. D. Simwonis, H. Thulen, F. J. Dias, A. Naoumidis, and D. Stover, "Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix® process", J. Mater. Process. Technol., Vol. 92-93, 1999, pp. 107-111, doi: https://doi.org/10.1016/S0924-0136(99)00214-9.
  27. H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, "Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing", Int. J. Hydrogen Energy, Vol. 33, No. 6, 2008, pp. 1758-1768, doi: https://doi.org/10.1016/j.ijhydene.2007.12.062.
  28. D. Rotureau, J. P. Viricelle, C. Pijolat, N. Caillol, and M. Pijolat, "Development of a planar SOFC device using screen-printing technology", J. Eur. Ceram. Soc., Vol. 25, No. 12, 2005, pp. 2633-2636, doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.115.
  29. C. Xia, F. Chen, and M. Liu, "Reduced-temperature solid oxide fuel cells fabricated by screen printing", Electrochem. Solid-State Lett., Vol. 4, No. 5, 2001, pp. A52, doi: https://doi.org/10.1149/1.1361158.
  30. X. Ge, X. Huang, Y. Zhang, Z. Lu, J. Xu, K. Chen, D. Dong, Z. Liu, J. Miao, and W. Su, "Screen-printed thin YSZ films used as electrolytes for solid oxide fuel cells", J. Power Sources, Vol. 159, No. 2, 2006, pp. 1048-1050, doi: https://doi.org/10.1016/j.jpowsour.2005.12.013.
  31. Y. Zhang, J. Liu, X. Huang, Z. Lu, and W. Su, "Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing", Solid State Ionics, Vol. 179, 2008, pp. 250-255, doi: https://doi.org/10.1016/j.ssi.2008.02.008.
  32. P. Ried, C. Lorenz, A. Bronstrup, T. Graule, N. H. Menzler, W. Sitte, and P Holtappels, "Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC", J. Eur. Ceram. Soc., Vol. 28, No. 9, 2008, pp. 1801-1808, doi: https://doi.org/10.1016/j.jeurceramsoc.2007.11.018.
  33. C. Brahim, A. Ringuede, E. Gourba, M. Cassir, A. Billard, and P. Briois, "Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering", J. Power Sources, Vol. 156, No. 1, 2006, pp. 45-49, doi: https://doi.org/10.1016/j.jpowsour.2005.08.017.
  34. G . J. La O, J. H ertz, H . Tuller, and Y. Shao-Horn, "Microstructural features of RF-sputtered SOFC anode and electrolyte materials", J. Electroceramics, Vol. 13, No. 1-3, 2004, pp. 691-695, doi: https://doi.org/10.1007/ s10832-004-5177-9.
  35. K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, "Sputtered La0.5Sr0.5MnO3-yttria stabilized zirconia composite film electrodes for SOFC", Solid State Ionics, Vol. 98, No. 1-2, 1997, pp. 49-55, doi: https://doi.org/10.1016/S0167-2738(97)00098-2.
  36. C. L. Chu, J. Y. Wang, and S. Lee, "Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering", Int. J. Hydrogen Energy, Vol. 33, No. 10, 2008, pp. 2536-2546, doi: https://doi.org/10.1016/j.ijhydene.2008.02.061.
  37. N. Orlovskaya, A. Coratolo, C. Johnson, and R. Gemmen, "Structural characterization of lanthanum chromite perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a promising interconnect ma terial for SOFCs", J. Am. Ceram. Soc., Vol. 87, 2005, pp. 1981-1987, doi: https://doi.org/10.1111/j.1151-2916.2004.tb06350.x.
  38. D. Perednis and L. J. Gauckler, "Solid oxide fuel cells with electrolytes prepared via spray pyrolysis", Solid State Ionics, Vol. 166, No. 3-4, 2004, pp. 229-239, doi: https://doi.org/10.1016/j.ssi.2003.11.011.
  39. T. Setoguchi, M . Sawano, K. Eguchi, and H . Arai, "Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC", Solid State Ionics, Vol. 40-41, 1990, pp. 502-505, doi: https://doi.org/10.1016/0167-2738(90)90390-D.
  40. D. Beckel, U. P. Muecke, T. Gyger, G. Florey, A. Infortuna, and L. J. Gauckler, "Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis", Solid State Ionics, Vol. 178, No. 5-6, 2007, pp. 407-415, doi: https://doi.org/10.1016/j.ssi.2007.01.019.
  41. A. O. Stoermer, J. L. M. Rupp, and L. J. Gauckler, "Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC", Solid State Ionics, Vol. 177, No. 19-25 SPEC. ISS., pp. 2075-2079, 2006, doi: https://doi.org/10.1016/j.ssi.2006.06.033.
  42. S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida, and T. Inagaki, "Preparation of SOFC anode composites by spray pyrolysis", J. Eur. Ceram. Soc., Vol. 26, No. 4-5, 2006, pp. 593-597, doi: https://doi.org/10.1016/j.jeurceramsoc.2005.07.038.
  43. P. Gannon, M. Deibert, P. White, R. Smith, H. Chen, W. Priyantha, J. Lucas, and V. Gorokhovsky, "Advanced PVD protective coatings for SOFC interconnects", Int. J. Hydrogen Energy, Vol. 33, No. 14, 2008, pp. 3991-4000, doi: https://doi.org/10.1016/j.ijhydene.2007.12.009.
  44. V. I. Gorokhovsky, P. E. Gannon, M. C. Deibert, R. J. Smith, A. Kayani, M. Kopczyk, D. VanVorous, Zhenguo Yang, J. W. Stevenson, S. Visco, C. Jacobson, H. Kurokawa, and S. W. Sofie, "Deposition and evaluation of protective pvd coatings on ferritic stainless steel SOFC interconnects", J. Electrochem. Soc., Vol. 153, No. 10, 2006, pp. A1886, doi: https://doi.org/10.1149/1.2266244.
  45. H. Y. Jung, K. S. Hong, H. Kim, J. K. Park, J. W. Son, J. Kim, H. W. Lee, and J. H. Lee, "Characterization of thin-film YSZ deposited via EB-PVD technique in anode-supported SOFCs", J. Electrochem. Soc., Vol. 153, No. 6, 2006, pp. A961, doi: https://doi.org/10.1149/1.2186209.
  46. Y. Liu, S. Zha, and M. Liu, "Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD)", Adv. Mater., Vol. 16, No. 3, 2004, pp. 256-260, doi: https://doi.org/10.1002/adma.200305767.
  47. Y. Liu, W. Rauch, S. Zha, and M. Liu, "Fabrication of Sm0.5Sr0.5CoO3-δ-Sm0.1Ce0.9O3-δ; cathodes for solid oxide fuel cells using combustion CVD", Solid State Ionics, Vol. 166, No. 3-4, 2004, pp. 261-268, doi: https://doi.org/10.1016/j.ssi.2003.12.001.
  48. T. Takeyama, N. Takahashi, T. Nakamura, and S. Itoh, "δ-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications", Surf. Coatings Technol., Vol. 200, No. 16-17, 2006, pp. 4797-4801, doi: https://doi.org/10.1016/j.surfcoat.2005.04.047.
  49. G. Meng, H. Song, C. Xia, X. Liu, and D. Peng, "Novel CVD techniques for Micro- and IT-SOFC fabrication", Fuel Cells, Vol. 4, No. 1-2, 2004, pp. 48-55, doi: https://doi.org/10.1002/fuce.200400006.
  50. G. Y. Meng, H. Z. Song, H. B. Wang, C. R. Xia, and D. K. Peng, "Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques", Thin Solid Films, Vol. 409, No. 1, 2002, pp. 105-111, doi: https://doi.org/10.1016/S0040-6090(02)00111-6.
  51. L. Jia, Z. Lu, X. Huang, Z. Liu, K. Chen, X. Sha, G. Li, and W. Su, "Preparation of YSZ film by EPD and its application in SOFCs", J. Alloys Compd., Vol. 424, No. 1-2, 2006, pp. 299-303, doi: https://doi.org/10.1016/j.jallcom.2005.12.065.
  52. M. Matsuda, T. Hosomi, K. Murata, T. Fukui, and M. Miyake, "Direct EPD of YSZ electrolyte film onto porous NiO-YSZ composite substrate for reduced-temperature operating anode-supported SOFC", Electrochem . Solid-State Lett., Vol. 8, No. 1, 2005, pp. A 8, doi: https://doi.org/10.1149/1.1828342.
  53. K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, and H. Yokokawa, "Performance of anode-supported SOFCs fabricated with EPD techniques", Solid State Ionics, Vol. 175, No. 1-4, 2004, pp. 165-169, doi: https://doi.org/10.1016/j.ssi.2004.09.032.
  54. C. Li, H. Shi, R. Ran, C. Su, and Z. Shao, "Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance", Int. J. Hydrogen Energy, Vol. 38, No. 22, 2013, pp. 9310-9319, doi: https://doi.org/10.1016/j.ijhydene.2013.05.025.
  55. M. Sukeshini A., F. Meisenkothen, P. Gardner, and T. L. Reitz, "Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy", J. Power Sources, 2013, Vol. 224, pp. 295-303, doi: https://doi.org/10.1016/j.jpowsour.2012.09.094.
  56. M. R. Weimar, L. A. Chick, D. W. Gotthold, and G. A. Whyatt, "Cost study for manufacturing of solid oxide fuel cell power systems", 2013, doi: https://doi.org/10.2172/1126362.
  57. A. Casanova, "A consortium approach to commercialized Westinghouse solid oxide fuel cell technology", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 65-70, doi: https://doi.org/10.1016/S0378-7753(97)02757-2.
  58. K. Horiuchi, "Current status of national SOFC projects in Japan", ECS Transactions, Vol. 57, No. 1, pp. 3-10, 2013, https://iopscience.iop.org/article/10.1149/05701.0003ecst.
  59. M. Kadowaki, "Current status of national SOFC projects in Japan", ECS Transactions, Vol. 68, No. 1, pp. 15-22, 2015, https://iopscience.iop.org/article/10.1149/06801.0015ecst.
  60. B. Zhu, "Next generation fuel cell R & D ", Int. J. Energy Res., Vol. 30, No. 11, 2006, pp. 895-903, doi: https://doi.org/10.1002/er.1195.
  61. C. Schubert, M. C. Van Langeveld, and L. A. Donoso, "Innovations in 3D printing: a 3D overview from optics to organs", Br. J. Ophthalmol., Vol. 98, No. 2, 2014, pp. 159-161, doi: https://doi.org/10.1136/bjophthalmol-2013-304446.
  62. M. Vaezi and C. K. Chua, "Effects of layer thickness and binder saturation level parameters on 3D printing process", Int. J. Adv. Manuf. Technol., Vol. 53, No. 1-4, 2011, pp. 275-284, doi: https://doi.org/10.1007/s00170-010-2821-1.
  63. M. N. Jahangir, M. A. H. Mamun, and M. P. Sealy, "A review of additive m anufacturing of m agnesium alloys", AIP Conf. Proc., Vol. 1980, No. 1, 2018, doi: https://doi.org/10.1063/1.5044305.
  64. B. Berman, "3-D printing: the new industrial revolution", Bus. Horiz., Vol. 55, No. 2, 2012, pp. 155-162, doi: https://doi.org/10.1016/j.bushor.2011.11.003.
  65. V. Petrovic, J. V. H. Gonzalez, O. J. Ferrando, J. D. Gordillo, J. R. B. Puchades, and L. P. Grinan, "Additive layered manufacturing: sectors of industrial application shown through case studies", Vol. 49, No.4, 2011, pp. 1061-1079, doi: https://doi.org/10.1080/00207540903479786.
  66. P. Calvert, "Inkjet printing for materials and devices", Chem. Mater., Vol. 13, No. 10, 2001, pp. 3299-3305, doi: https://doi.org/10.1021/cm0101632.
  67. R. I. Tomov, M. Krauz, J. Jewulski, S. C. Hopkins, J. R. Kluczowski, D. M. Glowacka, and B. A. Glowacki, "Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells", J. Power Sources, Vol. 195, No. 21, 2010, pp. 7160-7167, doi: https://doi.org/10.1016/j.jpowsour.2010.05.044.
  68. M. A. Sukeshini, R. Cummins, T. L. Reitz, and R. M. Miller, "Ink-jet printing: a versatile method for multilayer solid oxide fuel cells fabrication", J. Am. Ceram. Soc., Vol. 92, No. 12, 2009, pp. 2913-2919, doi: https://doi.org/10.1111/j.1551-2916.2009.03349.x.
  69. E. A. Roth, T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland, "Inkjet printing for high-throughput cell patterning", Biomaterials, Vol. 25, No. 17, 2004, pp. 3707-3715, doi: https://doi.org/10.1016/j.biomaterials.2003.10.052.
  70. V. Esposito, C. Gadea, J. H jelm , D. M arani, Q . Hu, K. Agersted, S. Ramousse, and S. H. Jensen, "Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells", J. Power Sources, Vol. 273, 2015, pp. 89-95, doi: https://doi.org/10.1016/j.jpowsour.2014.09.085.
  71. G. D. Han, K. C. Neoh, K. Bae, H. J. Choi, S. W. Park, J. W. Son, and J. H. Shim, "Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer", J. Power Sources, Vol. 306, 2016, pp. 503-509, doi: https://doi.org/10.1016/j.jpowsour.2015.12.067.
  72. G. Cummins and M. P. Y. Desmulliez, "Inkjet printing of conductive materials: a review", Circuit World, Vol. 38, No. 4, 2012, pp. 193-213, doi: https://doi.org/10.1108/03056121211280413.
  73. J. E. Fromm, "Numerical calculation of the fluid dynamics of drop-on-demand jets", IBM J. Res. Dev., Vol. 28, 1984, pp. 322-333. https://doi.org/10.1147/rd.283.0322
  74. N. Reis and B. Derby, "Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation", MRS Proceedings, Vol. 624, 2000, pp. 65, doi: https://doi.org/10.1557/PROC-624-65.
  75. D. Zhao, T. Liu, M. Zhang, R. Liang, and B. Wang, "Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures", Smart Mater. Struct., Vol. 21, No. 11, 2012, doi: https://doi.org/10.1088/0964-1726/21/11/115008.
  76. A. Mahajan, C. D. Frisbie, and L. F. Francis, "Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines", ACS Appl. Mater. Interfaces, Vol. 5, No. 11, 2013, pp. 4856-4864, doi: https://doi.org/10.1021/am400606y.
  77. D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, "Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling", J. Biomed. M ater. Res., Vol. 55, No. 2, 2001, pp. 203-216, doi: https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7.
  78. O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, "Optimization of fused deposition modeling process parameters: a review of current research and future prospects", Adv. Manuf., Vol. 3, No. 1, 2015, pp. 42-53, doi: https://doi.org/10.1007/s40436-014-0097-7.
  79. M. L. Shofner, K. Lozano, F. J. Rodriguez‐Macias, and E. V. Barrera, " Nanofiber‐reinforced polymers prepared by fused deposition modeling", J. Appl. Polym. Sci., Vol. 89, No. 11, 2003, pp. 3081-3090, doi: https://doi.org/10.1002/app.12496.
  80. I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications", Biomaterials, Vol. 23, No. 4, 2002, pp. 1169-1185, doi: https://doi.org/10.1016/S0142-9612(01)00232-0.
  81. X. Yan and P. Gu, "A review of rapid prototyping technologies and systems", Computer-Aided Design, Vol. 28, No. 4, 1996, pp. 307-318, doi: https://doi.org/10.1016/0010-4485(95)00035-6.
  82. B. Dhariwala, E. Hunt, and T. Boland, "Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography", Tissue Engineering, Vol. 10, No. 9-10, 2004, pp. 1316-1322, doi: https://doi.org/10.1089/ten.2004.10.1316.
  83. H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, and S. Wu, "Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing", Ceram. Int., Vol. 43, No. 1, 2017, pp. 968-972, doi: https://doi.org/10.1016/j.ceramint.2016.10.027.
  84. P. Jacobs, "Stereolithography 1993: epoxy resins, improved accuracy, and investment casting", Proc. SPIE 2102, Coupling Technology to National Need, 1994, doi: https://doi.org/10.1117/12.170612.
  85. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering", Biomaterials, Vol. 31, No. 24, 2010, pp. 6121-6130, doi: https://doi.org/10.1016/j.biomaterials.2010.04.050.
  86. J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering", Biomaterials, Vol. 26, No. 23, 2005, pp. 4817-4827, doi: https://doi.org/10.1016/j.biomaterials.2004.11.057.
  87. K. A. Sidarto, A. Kania, and N. Sumarti, "Finding multiple solutions of multimodal optimization using spiral optimization algorithm with clustering", Mendel, Vol. 23, No. 1, 2017, pp. 95-102, doi: https://doi.org/10.13164/mendel.2017.1.095.
  88. S. F. S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H. S. C. Metselaar, N. A. Kadri, and N. A. A. Osman, "A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing", Sci. Technol. Adv. Mater., Vol. 16, No. 3, 2015, doi: https://doi.org/10.1088/1468-6996/16/3/033502.
  89. M. Vaezi, H. Seitz, and S. Yang, "A review on 3D micro-additive manufacturing technologies", Int. J. Adv. Manuf. Technol., Vol. 67, No. 5-8, 2013, pp. 1721-1754, doi: https://doi.org/10.1007/s00170-012-4605-2.
  90. S. Eshraghi and S. Das, "Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering", Acta Biomater., Vol. 6, No. 7, 2010, pp. 2467-2476, doi: https://doi.org/10.1016/j.actbio.2010.02.002.
  91. J. C. Ruiz-Morales, A. Tarancon, J. Canales-Vazquez, J. Mendez-Ramos, L. Hernandez-Afonso, P. Acosta-Mora, J. R. M. Ruedac, and R. Fernandez-Gonzalez, "Three dimensional printing of components and functional devices for energy and environmental applications", Energy Environ. Sci., Vol. 10, No. 4, 2017, pp. 846-859, doi: https://doi.org/10.1039/c6ee03526d.
  92. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, "Fabrication of thin electrolytes for second-generation solid oxide fuel cells", Solid State Ionics, Vol. 131, No. 1-2, 2000, pp. 79-96, doi: https://doi.org/10.1016/S0167-2738(00)00624-X.
  93. J. S. Kim, M. H. Cho, S. C. Lee, J. H. Pang, J. H. Lee, and A. Ohki, "Lead selective lipophilic acyclic diionizable polyethers", Talanta, Vol. 49, No. 1, 1999, pp. 69-75, doi: https://doi.org/10.1016/S0039-9140(98)00362-2.
  94. S. de Souza, S. J. Visco, and L. C. De Jonghe, "Thin-film solid oxide fuel cell with high performance at low-temperature", Solid State Ionics, Vol. 98, No. 1-2, 1997, pp. 57-61, doi: https://doi.org/10.1016/S0167-2738(96)00525-5.
  95. S. Kirihara, "Creation of functional ceramics structures by using stereolithographic 3D printing", Trans. JWRI, Vol. 43, No. 1, 2014, pp. 5-10.
  96. E. M. Hernandez-Rodriguez, P. Acosta-Mora, J. Mendez-Ramos, E. B. Chinea, P. E. Ferrera, J. Canales-Vazquez, P. Nunez, and J. C. Ruiz-Morales, "Prospective use of the 3D printing technology for the microstructural engineering of solid oxide fuel cell components", Bol. Soc. Esp. Ceram. Vidr., Vol. 53, No. 5, 2014, pp. 213-216, doi: https://doi.org/10.3989/cyv.252014.
  97. G. Manogharan, M. Kioko, and C. Linkous, "Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation", Jom, Vol. 67, No. 3, 2015, pp. 660-667, doi: https://doi.org/10.1007/s11837-015-1296-9.
  98. D. Young, A. M. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, and T. Reitz, "Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells", J. Power Sources, Vol. 184, No. 1, 2008, pp. 191-196, doi: https://doi.org/10.1016/j.jpowsour.2008.06.018.
  99. C. Wang, S. C. Hopkins, R. I. Tomov, R. V. Kumar, and B. A. Glowacki, "Optimisation of CGO suspensions for inkjet-printed SOFC electrolytes", J. Eur. Ceram. Soc., Vol. 32, No. 10, 2012, pp. 2317-2324, doi: https://doi.org/10.1016/j.jeurceramsoc.2012.03.001.
  100. A. M. El-Toni, T. Yamaguchi, S. Shimizu, Y. Fujishiro, and M. Awano, "Development of a dense electrolyte thin film by the ink‐jet printing technique for a porous LSM substrate", J. Am. Ceram. Soc., Vol. 91, No. 1, 2008, pp. 346-349, doi: https://doi.org/10.1111/j.1551-2916.2007.02151.x.
  101. M. Dudek, R. I. Tomov, C. Wang, B. A. Glowacki, P. Tomczyk, R. P. Socha, and M. Mosialek, "Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology", Electrochim. Acta, Vol. 105, 2013, pp. 412-418, doi: https://doi.org/10.1016/j.electacta.2013.04.139.
  102. N. M. Farandos, L. Kleiminger, T. Li, A. Hankin, and G. H. Kelsall, "Three-dimensional inkjet printed solid oxide electrochemical reactors. I. Yttria-stabilized zirconia electrolyte", Electrochim. Acta, Vol. 213, 2016, pp. 324-331, doi: https://doi.org/10.1016/j.electacta.2016.07.103.
  103. C. Wang, R. I. Tomov, R. V. Kumar, and B. A. Glowacki, "Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications", J. Mater. Sci., Vol. 46, No. 21, 2011, pp. 6889-6896, doi: https://doi.org/10.1007/s10853-011-5653-y.
  104. R. I. Tom ov, M . Krauz, A. Tluczek, R. Kluczowski, Venkatesan V. Krishnan, K. Balasubramanian, R. V. Kumar, and B. A. Glowacki, "Vacuum-sintered stainless steel porous supports for inkjet printing of functional SOFC coatings", Mater. Renew. Sustain. Energy, Vol. 4, No. 3, 2015, pp. 4-14, doi: https://doi.org/10.1007/s40243-015-0056-7.
  105. A. M. Sukeshini, P. Gardner, F. Meisenkothen, T. Jenkins, R. Miller, M. Rottmayer, and T. L. Reitz, "Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers", ECS Trans., Vol. 35, No. 1, 2011, pp. 2151-2160, doi: https://doi.org/10.1149/1.3570207.
  106. A. M. Sukeshini, R. Cummins, T. L. Reitz, and R. M. Miller, "Inkjet printing of anode supported SOFC: comparison of slurry pasted cathode and printed cathode", Electrochem. Solid-State Lett., Vol. 12, No. 12, 2009, pp. B176, doi: https://doi.org/10.1149/1.3243468.
  107. R. I. Tomov, R. Duncan, M. Krauz, R. V. Kumar, and B. A. Glowacki, "Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication", E3S Web Conf. SEED 2016, Vol. 10, p. 000098, 2016, doi: https://doi.org/10.1051/e3sconf/20161000098.
  108. J. Liu and S. Bai, "Femtosecond laser additive manufacturing of YSZ", Appl. Phys. A Mater. Sci. Process., Vol. 123, No. 4, pp. 1-8, 2017, doi: https://doi.org/10.1007/s00339-017-0929-y.
  109. Y. Xu, N. Farandos, M. Rosa, P. Zielke, V. Esposito, P. V. Hendriksen, S. H. Jensen, T. Li, G. Kelsall, and R. Kiebach, "Continuous hydrothermal flow synthesis of Gd‐doped CeO2 (GDC) nanoparticles for inkjet printing of SOFC electrolytes", Int. J. Appl. Ceram. Technol., Vol. 15, No. 2, 2018, pp. 315-327, doi: https://doi.org/10.1111/ijac.12845.
  110. S. Masciandaro, M. Torrell, P. Leone, and A. Tarancon, "Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications", J. Eur. Ceram. Soc., Vol. 39, No. 1, pp. 9-16, 2019, doi: https://doi.org/10.1016/j.jeurceramsoc.2017.11.033.
  111. A. Arabac and M . F. O ksuzomer, "Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications", Ceram. Int., Vol. 38, No. 8, pp. 6509-6515, 2012, doi: https://doi.org/10.1016/j.ceramint.2012.05.030.
  112. A. B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renew. Sustain. Energy Rev., Vol. 6, No. 5, pp. 433-455, 2002, doi: https://doi.org/10.1016/S1364-0321(02)00014-X.
  113. W. B. Russel, N. Wu, and W. Man, "Generalized Hertzian model for the deformation and cracking of colloidal packings saturated with liquid", Langmuir, Vol. 24, No. 5, pp. 1721-1730, 2008, doi: https://doi.org/10.1021/la702633t.
  114. A. Pesce, A. Hornes, M. Nunez, A. Morata, M. Torrell, and A. Tarancon, "3D printing the next generation of enhanced solid oxide fuel and electrolysis cells", J. Mater. Chem. A, 2020, doi: https://doi.org/10.1039/d0ta02803g.
  115. C. C. Chao, C. M. Hsu, Y. Cui, and F. B. Prinz, "Improved solid oxide fuel cell performance with nanostructured electrolytes", ACS Nano, Vol. 5, No. 7, pp. 5692-5696, 2011, doi: https://doi.org/10.1021/nn201354p.
  116. P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, and F. B. Prinz, "Solid oxide fuel cell with corrugated thin film electrolyte", Nano Lett., Vol. 8, No. 8, pp. 2289-2292, 2008, doi: https://doi.org/10.1021/nl800977z.
  117. B. Xing, C. Cao, W. Zhao, M. Shen, C. Wang, and Z. Zhao, "Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography", J. Eur. Ceram. Soc., Vol. 40, No. 4, pp. 1418-1423, 2020, doi: https://doi.org/10.1016/j.jeurceramsoc.2019.09.045.
  118. B. Xing, Y. Yao, X. Meng, W. Zhao, M. Shen, S. Gao, and Z. Zhao, "Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing", Scr. Mater., Vol. 181, 2020, pp. 62-65, doi: https://doi.org/10.1016/j.scriptamat.2020.02.004.
  119. L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, and S. Liu, "A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique", Int. J. Hydrogen Energy, Vol. 44, No. 12, 2019, pp. 6182-6191, doi: https://doi.org/10.1016/j.ijhydene.2019.01.071.
  120. Z. Feng, L. Liu, L. Li, J. Chen, Y. Liu, Y. Li, L. Hao, and Y. Wu, "3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13843-13851, doi: https://doi.org/10.1016/j.ijhydene.2019.03.254.
  121. W. Z. Zhu and S. C. Deevi, "A review on the status of anode materials for solid oxide fuel cells", Mater. Sci. Eng. A, Vol. 362, No. 1-2, 2003, pp. 228-239, doi: https://doi.org/10.1016/S0921-5093(03)00620-8.
  122. G. Kim, S. Lee, J. Y. Shin, G. Corre, J. T. S. Irvine, J. M. Vohs, and R. J. Gorte, "The electrochemical society investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM", Electrochem. Solid-State Lett., Vol. 12, No. 3, 2009, pp. B48, doi: https://doi.org/10.1149/1.3065971.
  123. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced anodes for high-temperature fuel cells", Mater. Sustain. Energy, Vol. 3, 2010, pp. 213-223, doi: https://doi.org/10.1038/nmat1040.
  124. Z. Liu, B. Liu, D. Ding, M. Liu, F. Chen, and C. Xia, "Review fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique", J. Power Sources, Vol. 237, 2013, pp. 243-259, doi: https://doi.org/10.1016/j.jpowsour.2013.03.025.
  125. R. J. Gorte and J. M. Vohs, "Nanostructured anodes for solid oxide fuel cells", Curr. Opin. Colloid Interface Sci., Vol. 14, No. 4, 2009, pp. 236-244, doi: https://doi.org/10.1016/j.cocis.2009.04.006.
  126. S. P. Jiang, "A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells", Mater. Sci. Eng. A, Vol. 418, No. 1-2, 2006, pp. 199-210, doi: https://doi.org/10.1016/j.msea.2005.11.052.
  127. E. D. Wachsman and K. T. Lee, "Lowering the temperature of solid oxide fuel cells", Science, Vol. 334, No. 6058, 2011, pp. 935-939, doi: https://doi.org/10.1126/science.1204090.
  128. S. Guo, H. Wu, F. Puleo, and L. Liotta, "B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1-xSrxCo1-yFeyO3-δ perovskite oxides as cathodes for IT-SOFCs", Catalysts, Vol. 5, No. 1, 2015, pp. 366-391, doi: https://doi.org/10.3390/catal5010366.
  129. D. Ding, X. Li, S. Y. Lai, K. Gerdes, and M. Liu, "Enhancing SOFC cathode performance by surface modification through infiltration", Energy Environ. Sci., Vol. 7, No. 2, pp. 552-575, 2014, doi: https://doi.org/10.1039/c3ee42926a.
  130. J. P. P. Huijsmans, F. P. F. Van Berkel, and G. M. Christie, "Intermediate temperature SOFC - a promise for the 21st century", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 107-110, doi: https://doi.org/10.1016/S0378-7753(97)02789-4.
  131. S. D. Kim, S. H. Hyun, J. Moon, J. H. Kim, and R. H. Song, "Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells", J. Power Sources, Vol. 139, No. 1-2, 2005, pp. 67-72, doi: https://doi.org/10.1016/j.jpowsour.2004.07.013.
  132. B. S. Prakash, S. S. Kumar, and S. T. Aruna, "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review", Renew. Sustain. Energy Rev., Vol. 36, 2014, pp. 149-179, doi: https://doi.org/10.1016/j.rser.2014.04.043.
  133. K. Miyamoto, H. Koga, M. Izumi, M. Mizui, and H. Nishiguchi, "Study on fabrication of anodes for SOFCs with 3D printing technology", ECS Trans., Vol. 96, No. 1, 2020, pp. 219-226, doi: https://doi.org/10.1149/09601.0219ecst.
  134. G. D. Han, K. Bae, E. H. Kang, H. J. Choi, and J. H. Shim, "Inkjet printing for manufacturing solid oxide fuel cells", ACS Energy Lett., Vol. 5, No. 5, 2020, pp. 1586-1592, doi: https://doi.org/10.1021/acsenergylett.0c00721.
  135. C. Wang, R. I. Tomov, T. B. Mitchell-Williams, R. V. Kumar, and B. A. Glowacki, "Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells", J. Appl. Electrochem., Vol. 47, No. 11, 2017, pp. 1227-1238, doi: https://doi.org/10.1007/s10800-017-1114-x.
  136. T. B. Mitchell-Williams, R. I. Tomov, S. A. Saadabadi, M. Krauz, P. V. Aravind, B. A. Glowacki, and R. V. Kumar, "Infiltration of commercially available, anode supported SOFC's via inkjet printing", Mater. Renew. Sustain. Energy, Vol. 6, No. 2, 2017, pp. 1-9, doi: https://doi.org/10.1007/s40243-017-0096-2.
  137. C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electrochem., Vol. 14, No. 7, pp. 1125-1144, 2010, doi: https://doi.org/10.1007/s10008-009-0932-0.
  138. Y. Zhang, Q. Sun, C. Xia, and M. Ni, "Geometric properties of nanostructured solid oxide fuel cell electrodes", J. Electrochem. Soc., Vol. 160, No. 3, 2013, pp. F278-F289, doi: https://doi.org/10.1149/2.057303jes.
  139. H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, and Y. Fujishiro, "High performance of La0.6Sr0.4Co0.2Fe0.86O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells", J. Power Sources, Vol. 226, 2013, pp. 354-358, doi: https://doi.org/10.1016/j.jpowsour.2012.11.015.
  140. B. Huang, X. J. Zhu, Y. Lv, and H. Liu, "High-performance Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3-δ cathodes for interm ediate tem perature solid oxide fuel cell", J. Power Sources, Vol. 209, 2012, pp. 209-219, doi: https://doi.org/10.1016/j.jpowsour.2012.02.103.
  141. Q. Li, L. P. Sun, L. H. Huo, H. Zhao, and J. C. Grenier, "Electrochemical performance of La1.6Sr0.4NiO4-Ag composite cathodes for intermediate-temperature solid oxide fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1712-1716, doi: https://doi.org/10.1016/j.jpowsour.2010.10.032.
  142. E. H. Da'as, J. T. S. Irvine, E. Traversa, and S. Boulfrad, "Controllable impregnation via inkjet printing for the fabrication of solid oxide cell air electrodes", ECS Trans., Vol. 57, No. 1, 2013, pp. 1851-1857, doi: https://doi.org/10.1149/05701.1851ecst.
  143. R. I. Tomov, T. Mitchell-Williams, C. Gao, R. V. Kumar, and B. A. Glowacki, "Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration", J. Appl. Electrochem., Vol. 47, No. 5, 2017, pp. 641-651, doi: https://doi.org/10.1007/s10800-017-1066-1.
  144. T. Y. Hill, T. L. Reitz, M. A. Rottmayer, and H. Huang, "Controlling inkjet fluid kinematics to achieve SOFC cathode micropatterns", ECS J. Solid State Sci. Technol., Vol. 4, No. 4, 2015, pp. P3015-P3019, doi: https://doi.org/10.1149/2.0031504jss.
  145. T. H. Lee, K. Y. Liu, F. E. Wiria, and P. C. Su, "Inkjet-printed silver and samarium-doped ceria nanocomposite cathode for low temperature solid oxide fuel cells", EEE/SICE International Symposium on System Integration (SII), 2017, pp. 83-88, doi: https://doi.org/10.1109/SII.2017.8279193.
  146. C. Li, H. Chen, H. Shi, M. O. Tade, and Z. Shao, "Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing", J. Power Sources, Vol. 273, 2015, pp. 465-471, doi: https://doi.org/10.1016/j.jpowsour.2014.09.143.
  147. C. C. Yu, J. D. Baek, C. H. Su, L. Fan, J. Wei, Y. C. Liao, and P. C. Su, "Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell", ACS Appl. Mater. Interfaces, Vol. 8, No. 16, 2016, pp. 10343-10349, doi: https://doi.org/10.1021/acsami.6b01943.
  148. N. Yashiro, T. Usui, and K. Kikuta, "Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs", J. Eur. Ceram. Soc., Vol. 30, No. 10, 2010, pp. 2093-2098, doi: https://doi.org/10.1016/j.jeurceramsoc.2010.04.012.