• Title/Summary/Keyword: Cell mass

Search Result 2,608, Processing Time 0.028 seconds

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

Identification and Characterization of the Acid Phosphatase HppA in Helicobacter pylori

  • Ki, Mi-Ran;Yun, Soon-Kyu;Choi, Kyung-Min;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2011
  • An acid phosphatase (HppA) activated by $NH_4Cl$ was purified 192- and 34-fold from the periplasmic and membrane fractions of Helicobacter pylori, respectively. SDS-polyacrylamide gel electrophoresis revealed that HppA from the latter appears to be several kilodaltons larger in molecular mass than from the former by about 24 kDa. Under acidic conditions (pH${\leq}$4.5), the enzyme activity was entirely dependent on the presence of certain mono- and/or divalent metal cations (e.g., $K^+$,$ NH_4{^+}$, and/or $Ni^{2+}$). In particular, $Ni^{2+}$ appeared to lower the enzyme's $K_m$ for the substrates, without changing $V_{max}$. The purified enzyme showed differential specificity against nucleotide substrates with pH; for example, the enzyme hydrolyzed adenosine nucleotides more rapidly at pH 5.5 than at pH 6.0, and vice versa for CTP or TTP. Analyses of the enzyme's N-terminal sequence and of an $HppA^-$ H. pylori mutant revealed that the purified enzyme is identical to rHppA, a cloned H. pylori class C acid phosphatase, and shown to be the sole bacterial 5'-nucleotidase uniquely activated by $NH_4Cl$. In contrast to wild type, $HppA^-$ H. pylori cells grew more slowly. Strikingly, they imported $Mg^{2+}$ at a markedly lowered rate, but assimilated urea rapidly, with a subsequent increase in extracellular pH. Moreover, mutant cells were much more sensitive to extracellular potassium ions, as well as to metronidazole, omeprazole, or thiophenol, with considerably lowered MIC values, than wild-type cells. From these data, we suggest that the role of the acid phosphatase HppA in H. pylori may extend beyond 5'-nucleotidase function to include cation-flux as well as pH regulation on the cell envelope.

Review on the Research Relative to Taeeumjowui-Tang(Taiyintiaowei-tang) (태음조위탕 관련연구 분석)

  • Park, Kyung-Moo;Song, Yun-Kyung;Lim, Hyung-Ho;Lee, Ju-Ah;Ko, Ho-Yeon;Park, Jung-Hyeon;Kim, Ho-Jun;Park, Sun-Jun;Park, Jeong-Su;Ko, Seong-Gyu
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.9 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • Objectives The purpose of this study is to research related to Taeeumjowui-Tang(Taiyintiaowei-tang) in oriental medicine. Methods "Taeeumjowui-Tang" was used as a search term. In order to see detail review, we classified all the searched study into type, method, purpose, item of evaluation, composition of herbal medication. Results We found out total twenty six studies. They were fifteen pieces of experimental studies, five clinical case studies, five case reports and one literature review according to type and method. There were fourteen thesis that experiments on efficacy and effect in the purpose of study. Only one thesis showed about stability and toxicity. There were eleven prescription of different composition and dosage. In the item of evaluation, serum biochemical analysis, cell study, body and organ weight, food consumption, body mass index, waist circumference, waist-hip circumference ratio, bioelectrical impedance analysis were used. Conclusion To improve more objective and continuous research in oriental medicine, it is needed unity about prescription and dosage, activation of clinical trial research and variation of research subject.

  • PDF

Purification and Properties of a Membrane-bound Alcohol Dehydrogenase from Acetobacter sp. HA (Acetobacter sp. HA로부터 Membrane-bound Alcohol Dehydrogenase의 정제 및 특성)

  • Yoo, Jin-Cheol;Sim, Jung-Bo;Kim, Heung-Keun;Chun, Hong-Sung;Kim, Sung-Jin
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.78-83
    • /
    • 1994
  • Membrane-bound alcohol dehydrogenase(ADH) was purified to homogeneous state fron an acetic acid producing bacteria, Acetobacter sp. HA. The enzyme was purified about 153-fold with an overall yield of 35% from the crude cell extract by solubilization and extraction of the enzyme with Triton X-100 and subsequent fractions by column chromatography. Upon sodium dodecyl sulphate-PAGE, the enzyme showed the presence of three subunits with a molecular mass of 79,000 daltons, 49,000, and 45,000 daltons, respectively. Absorption oxidized aliphatic alcohols with a straight carbon chain except for methanol. Formaldehyde, acetaldehyde and glutaraldehyde were also oxidizable substrates. The apparent $K_m$ for ethanol was 1.38mM. The optimun pH and temperature were 5.0~6.0 and 32${\circ}C$, respectively. $V_2O_5$ and heavy metals such as $ZnCl_2\;and\; NiCl_2$ were inhibitory to the enzyme activity.

  • PDF

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action

  • Yenn, Tong Woei;Ibrahim, Darah;Chang, Lee Kok;Ab Rashid, Syarifah;Ring, Leong Chean;Nee, Tan Wen;Noor, Muhamad Izham bin Muhamad
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.193-199
    • /
    • 2017
  • This study was aimed to evaluate the antimicrobial activity of Penicillium purpurogenum ED76 on several clinically important microorganisms. The endophytic fungus P. purpurogenum ED76 was previously isolated from Swietenia macrophylla leaf. The antimicrobial efficacy of P. purpurogenum ED76 dichloromethane extract was determined via disc diffusion and broth microdilution assay. A kill curve study was conducted and the morphology of extract treated bacterial cells were viewed under scanning electron microscope. The dichloromethane extract showed significant inhibitory activity on 4 test bacteria and 2 test yeasts. The minimal inhibitory concentration of the extract ranged from 125 to $1,000{\mu}g/ml$, which indicates the different susceptibility levels of the test microorganisms to the fungal extract. The kill curve study has revealed a concentration-dependent inhibition for all test microorganisms. With the increase of the extract concentration, the microbial growth was significantly reduced. The scanning electron micrograph of dichloromethane extract-treated Staphylococcus aureus cells showed the total damage of the cells. The cell wall invagination of the bacterial cells also indicates the loss of cellular materials and metabolic activity. The gas chromatography mass spectrometry analysis of the extract also showed that the major compound was stigmasterol, which constitutes 45.30% of the total area. The dichloromethane extract of P. purpurogenum ED76 exhibited significant inhibitory activity on several clinically important bacteria and yeasts. The study proposed a possible mode of action that the extract cause significant damage to the morphology of S. aureus cells.

Parameter Effect on Elastic Modulus of Discontinuity Rock-mass Based on Homogenization Method (균질화 이론에 근거한 불연속성 암반의 탄성계수에 영향을 미치는 불연속면의 조사 인자에 관한 연구)

  • Baek, Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.63-70
    • /
    • 2000
  • The quantitative analyses and the mechanical interpretation of discontinuity planes are the most important factor for the study of strength and deformation properties of rock masses containing discontinuity planes. However, the relationship between the factors investigated in the field and the actual mechanical properties of discontinuity planes is not fully understood. The main purpose of this study is to investigate the effects of density, length, and spacing of joints on elastic modulus of rock masses as these values vary. A new parameter which has a direct relation with the elastic modulus of discontinuity planes is also preposed in this study. The combination of finite element methods and homogenization methods has been used for the numerical analyses of a uintcell with discontinuity planes, which is generated using random-number generation methods. The elastic modulus of the discontinuity plane is found from the numerical analyses. The final results propose not only the relation between the investigation parameters of discontinuity planes and the elastic modulus of rock masses but also a new parameter, an effect area ratio having a linear relation with the elastic modulus of rock masses.

  • PDF

Effects of Ru/C Catalyst on the CO Tolerance of Anode and Durability of Membrane in PEMFC (PEMFC에서 전극의 CO 내성 및 막 내구성에 미치는 Ru/C 촉매의 영향)

  • Sim, Woo-jong;Kim, Dong-whan;Choi, Seo-hee;Kim, Ki-joong;Ahn, Ho-Geun;Jung, Min-chul;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • Small amounts of CO in reformate fuel gas effectively block platinum catalysts by strong adsorption on the platinum surface at the operation temperature of $60{\sim}80^{\circ}C$ in PEMFC. To oxidate CO, Ru/C layer (CO filter) was placed between Pt/C layer and GDL (gas diffusion layer) in this study. Ru/C filter provided good CO-tolerant PEMFC anode, but decreased the performance of unit cell about 10% at 0.6 V due to mass transfer resistance from Ru/C filter thickness and increase of charge transfer resistance. Membrane degradation is one of the most important factors limiting the life-time of PEMFCs. Membrane durability would be dependent on the electrode catalyst type. It seemed that Ru catalyst layer would shorten the life time of PEMFC as enhanced the fluoride emission rate of membrane in acceleration test.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

Characterization of Hemolytic Aeromonas sp. MH-8 Responding to the Exposure of Green Tea Catechin, EGCG (녹차 카테킨 EGCG의 노출에 따른 식중독 세균인 용혈성 Aeromonas sp. MH-8의 특성조사)

  • Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.228-236
    • /
    • 2016
  • The aim of this study was to characterize the hemolytic Aeromonas sp. MH-8 exposed to green tea catechin, epigallocatechin gallate (EGCG). Initially, the hemolytic Aeromonas sp. MH-8 was enriched and isolated from stale fish. Bactericidal effects of MH-8 exposed to EGCG ranging from 1 mg/mL to 4 mg/mL were monitored, and complete bactericidal effects were achieved within 3 h at 3 mg/mL and higher concentrations. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharides increased or decreased in the strain MH-8 treated to different concentrations and exposing periods of EGCG in exponentially growing cultures. The stress shock proteins (70-kDa DnaK and 60-kDa GroEL), which might contribute to enhancing the cellular resistance to the cytotoxic effect of EGCG, were induced at different concentrations of EGCG exposed to cell culture of MH-8. Scanning electron microscopic analysis demonstrated the presence of irregular rod shapes with umbilicated surfaces for cells treated with EGCG. 2-DE of soluble protein fractions from MH-8 cultures showed 18 protein spots changed by EGCG exposure. These proteins involved in chaperons (e.g., DnaK, GroEL and trigger factor), enterotoxins (e.g., aerolysin and phospholipase C precursor), LPS synthesis (e.g., LPS biosynthesis protein and outer membrane protein A precursor), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. In consequence, EGCG was found to have substantial antibacterial effects against food-poisoning causing bacterium, hemolytic Aeromonas sp. MH-8. Also the results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on Aeromonas sp. MH-8.