• Title/Summary/Keyword: Cell differentiation inducer

Search Result 23, Processing Time 0.025 seconds

Screening and Isolation of the Cell Differentiation Inducers from Medicinal Plants (I) (생약으로부터 세포분화유도물질의 검색 및 분리 및 분리 (I))

  • Park, Eun-Jung;Kim, Jin-Woong
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.225-232
    • /
    • 1997
  • 300 extracts derived from 100 plants were tested for their potential to induce HL-60 cell differentiation using NBT assay and NSE/SE staining methods. Morphological changes from suspended to adherent state of the cells were also observed by microscopic examination. In result, 55 extracts induced cell differentiation into monocyte/macrophage lineage in the NBT and the NSE assay.

  • PDF

Synthesis of Diacetoxy Acetal Derivatives of Santonin and their Enhancing Effects on HL-60 Leukemia Cell Differentiation

  • Kim, Seung-Hyun;Chung, Sun-Young;Kim, Tae-Sung;Choi, Bo-Gil
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • Several diacetoxy acetal analogues have been synthesized from santonin and assessed for their ability of inducing or enhancing the differentiation of human HL-60 leukemia cells. The compounds themselves had little effect on HL-60 cell differentiation. However, three analogues, 2a, 3a, and 5b, synergistically enhanced 1,25-dihydroxyvitamin $D_3[1,25-(OH)_2D_3]-induced$ HL-60 cell differentiation when combined with 5 nM of dihydroxyvitamin $D_3[1,25(OH)_2O_3]$, a well-known differentiation inducer. Especially, the compound 5b profoundly enhanced the $1,25-(OH)2O_3]-induced$ HL-60 cell differentiation.

Acteoside induce antiproliferation and differentiation on HL-60, Human leukemia cell line, by cell cycle arrest.

  • Lee, Kyoung-Won;Choi, Jung-Hye;Lee, Kyung-Tae;Lee, Yong-Sup;Kim, Hyoung-Ja;Park, Hee-Juhn
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.215.1-215.1
    • /
    • 2003
  • We investigated the in vitro effect of Acteoside , phenylpropanoid glycosides. is a natural product isolated from …. on proliferation, differentiation and cell cycle regulation in human promyelocytic HL -60 leukemia cells. Acteoside significantly inhibited the proliferation of HL -60 cells, with IC50 of about 30$\mu\textrm{g}$/$m\ell$. It was also found to be a potent inducer of differentiation in human leukemia derived HL-60 cells through the examination of differentiation markers. (omitted)

  • PDF

Optimization of Tyrosinase Production using Neurospora crassa (Neurospora crassa를 이용한 Tyrosinase 생산의 최적화)

  • 채희정;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.281-289
    • /
    • 1991
  • Neurospora crassa (KCTC 6079) produces tyrosinase (EC 1.14.18.1) during sexual differentiation under derepressed conditions in the presence of inducers such as amino acid analogues, antimetabolites or protein synthesis inhibitors. The selection of inducer concentration and induction time as well as inducer type are critical for the optimization of the enzyme production. The best inducer was found to be cycloheximide. Since cycloheximide was toxic to the cells, an optimal inducer concentration and an optimal induction time were determined to maximize the enzyme production from batch cultures. Mathematical models for the cell growth and the enzyme production were proposed and used for process optimization. By optimizing the induction conditions, maximum tyrosinase productivity was increased significantly.

  • PDF

Induction of Differentiation of the Human Histocytic Lymphoma Cell Line U-937 by Hypericin

  • Kim, Joo-Il;Park, Jae-Hoon;Park, Hee-Juhn;Choi, Seung-Ki;Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.41-45
    • /
    • 1998
  • Hypericin, a photosensitizing plant pigment, was found to be a potent inducer of differentiation of human myeloid leukemia U-937 cells. At a concentration of $0.2{\mu}M$, hypericin exhibited 50% growth inhibition. An effect on cell differentiation by hypericin was assessed by its ability to induce phagocytosis of latex particles, and to reduce nitroblue tetrazolium (NBT). Approximately 51% of $0.2{\mu}M$ hypericin-treated cells were stained with NBT and 63% showed phagocytic activity. In order to establish whether hypericin induces differentiation of U-937 cells to macrophage or granulocyte, esterase activities and cell sizes were measured. When U-937 cells were treated with $0.2{\mu}M$ and $0.15{\mu}M$ of hypericin, the .alpha.-naphthyl acetate esterase activity was increased by 38.4% and 48.1%, respectively, but naphthol AS-D chloroacetate esterase activity was not influenced. The size of hypericin-treated cells in terms of cell mass was larger than that observed in untreated cells as determined by flow cytometry. Protein kinase C (PKC) inhibitor, NA-382, decreased the NBT reducing activity of hypericin, whereas a cAMP-dependent protein kinase A (PKA) inhibitor, H-89, did not show any influence on the differentiations. These results indicate that hypericin triggers differentiation toward monocyte/macrophage lineage by PKC stimulation.

  • PDF

Costunolide Induces Differentiation of Human Leukemia HL-60 Cells

  • Choi, Jung-Hye;Seo, Bo-Rim;Seo, Seong-Hoon;Lee, Kyung-Tae;Park, Jae-Hoon;Park, Hee-Juhn;Choi, Jong-Won;Yoshie-Itoh;Miyamoto, Ken-Ichi
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2002
  • Costunolide has been reported to be a cytotoxic and chemopreventive agent. This work investigated the mechanism of the anti proliferative effect of costunolide and determined that it induced differentiation of the human leukemia cell line HL-60. Costunolide exhibited a potent antiproliferative activity against HL-60 cells. It was also found to be a potent inducer of differentiation in human leukemia derived HL-60 cells through the examination of differentiation markers, as assessed by the reduction of nitroblue tetrazolium, the increase in esterase activities and phagocytic activity, morphology change and the expression of CD14 and CD66b surface antigens. These results, accompanied by a decline in the expression of c-myc protein, suggest that costunolide induces differentiation of human leukemia cells to granulocytes and monocytes/macrophages lineage.

Encystment of Azotobacter vinelandii

  • Pae, Kyoung-Hoon;So, Jae-Seong
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.27-31
    • /
    • 1993
  • Certain bacterial species possess the capability of differentiation through several morphogenetic changes which enable them to adapt to certain internal and external stimuli(Losick and Shapiro 1984). Upon induction, cells of A. vinelandii undergo a morphological process which leads to the production of one cyst per cell (Sadoff, 1975). The cysts are considerably resistant to desiccation, which confers a survival advantages upon the organism(Socolofsky and Wyss 1962). Like other prokaryotic differentiations encystment provides a relatively simple model of cellular differentiation. Like in other differentiating bacteria, vegetative growth can be separated from differentiation. Furthermore, the differentiation cycle can be synchronized by specific inducer. There have been a great deal of morphological and physiological studies on this process. However, the mechanisms used to regulate cell differentiation can be clearly defined by careful genetic analysis of the process. Unfortunately, A. vinelandii has proven to be difficult for genetic analysis (Sadoff 1975). For example, it has been shown that a variety of metabolic mutants of Azotobacter speicies are difficult to isolate after mutagenesis with chemical mutagens or UV irradiation. Nevertheless recent advances in molecular genetics in Azotobacter species, especially in the nitrogen fixation research area, appear to be able to overcome this difficulty (Robinson et al. 1986; Kennedy et al. 1986).

  • PDF

Establishment of Mouse Embryonic Stem Cell and Effects of Herbal Medicine on Induction of Cardiomyocyte Differentiation

  • Lee, Ji Hyang;Lee, Eun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.693-699
    • /
    • 2012
  • This study was conducted to investigate the effects of Woohwangcheungsimweun (ox bezoar), deer antlers, and wild ginseng on induction of cardiomyocyte differentiation using the established mouse embryonic stem (ES) cells. The expression of atrial natriuretic peptide (ANP) was highest in Woohwangcheungsimweun treatment group. The expression of rabbit anti-GATA-4(GATA-4) and troponin (TnI) were highest in wild ginseng and Woohwangcheungsimweun treatment groups, respectively. Fluorescence activated cell sorting (FACS) analysis showed that the expression of ANP was highest in Dimethyl sulfoxide(DMSO) and Woohwangcheungsimweun treatment groups. The expression of GATA-4 was relatively high in wild ginseng treatment group. The expression of TnI was highest in Woohwangcheungsimweun treatment group. In the gene expression analysis, DMSO greatly inhibited GATA-4 expression to 25% of control. Woohwangcheungsimweun treatment caused to increase cTnI and cardiac ANP expression significantly. Wild ginseng extract upregulated GATA-4 gene expression. In conclusion, DMSO widely used as cardiomyocyte differentiation inducer did not show significant effects on the expression of ANP, GATA-4 and TnI in this study. Woohwangcheungsimweun showed upregulation of ANP and TnI expression. Wild ginseng extract showed greater effects than DMSO on GATA-4 expression. These results might suggest that the combination of Woohwangcheungsimweun and wild ginseng extract treatment can be expected to increase expressions of all three genes.

Immunomodulation for maxillofacial reconstructive surgery

  • Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.5.1-5.9
    • /
    • 2020
  • Immunomodulation is a technique for the modulation of immune responses against graft material to improve surgical success rates. The main target cell for the immunomodulation is a macrophage because it is the reaction site of the graft and controls the healing process. Macrophages can be classified into M1 and M2 types. Most immunomodulation techniques focus on the rapid differentiation of M2-type macrophage. An M2 inducer, 4-hexylresorcinol, has been recently identified and is used for bone grafts and dental implant coatings.

Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies

  • Kitatani, Kazuyuki;Taniguchi, Makoto;Okazaki, Toshiro
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.482-495
    • /
    • 2015
  • Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal biomodulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.