DOI QR코드

DOI QR Code

Immunomodulation for maxillofacial reconstructive surgery

  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2020.01.23
  • Accepted : 2020.02.24
  • Published : 2020.12.31

Abstract

Immunomodulation is a technique for the modulation of immune responses against graft material to improve surgical success rates. The main target cell for the immunomodulation is a macrophage because it is the reaction site of the graft and controls the healing process. Macrophages can be classified into M1 and M2 types. Most immunomodulation techniques focus on the rapid differentiation of M2-type macrophage. An M2 inducer, 4-hexylresorcinol, has been recently identified and is used for bone grafts and dental implant coatings.

Keywords

Acknowledgement

This study was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project no. PJ01313902)" Rural Development Administration, Republic of Korea.

References

  1. Kang DW, Yun PY, Choi YH, Kim YK (2019) Sinus bone graft and simultaneous vertical ridge augmentation: case series study. Maxillofac Plast Reconstr Surg 41:36
  2. Koo CH, Lee JH (2018) Evaluation of mandibular cortical bone ratio on computed tomography images in patients taking bisphosphonates. Maxillofac Plast Reconstr Surg 40:17
  3. Kang DW, Kim SH, Choi YH, Kim YK (2019) Repeated failure of implants at the same site: a retrospective clinical study. Maxillofac Plast Reconstr Surg 41:27
  4. Kweon H, Lee SW, Hahn BD, Lee YC, Kim SG (2014) Hydroxyapatite and silk combination-coated dental implants result in superior bone formation in the peri-implant area compared with hydroxyapatite and collagen combination-coated implants. J Oral Maxillofac Surg 72:1928-1936
  5. Takebe J, Champagne CM, Offenbacher Ishibashi SK, Cooper LF (2003) Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line. J Biomed Mater Res Part A 64:207-216
  6. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474-5491
  7. Thalji G, Cooper LF (2014) Molecular assessment of osseointegration in vitro: a review of current literature. Int J Oral Maxillofac Implants 29:e171-e199
  8. Chen Z, Klein T, Murray RZ, Crawford R, Chang J, Wu C et al (2016) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304-321
  9. Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12:2093-2104
  10. Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M (2003) Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 24: 2739-2747
  11. Wu G, Liu Y, Iizuka T, Hunziker EB (2010) The effect of a slow mode of BMP2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds. Biomaterials 31:7485-7493
  12. Gray A, Maguire T, Schloss R, Yarmush ML (2015) Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 31:1058-1070
  13. Suarato G, Bertorelli R, Athanassiou A (2018) Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 6:137
  14. Refai AK, Textor M, Brunette DM, Waterfield JD (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 70:194-205
  15. Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology - from micron- to nanotopography. Biomaterials 29:3822-3835
  16. Ma QL, Zhao LZ, Liu RR, Jin BQ, Song W, Wang Y et al (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35:9853-9867
  17. Paul NE, Skazik C, Harwardt M, Bartneck M, Denecke B, Klee D et al (2008) Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29:4056-4064
  18. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51:239-254
  19. Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res Part A 83:585-596
  20. Yun JK, DeFife K, Colton E, Stack S, Azeez A, Cahalan L et al (1995) Human monocyte/macrophage adhesion and cytokine production on surfacemodified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. J Biomed Mater Res 29:257-268
  21. Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H (2002) Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res 43:529-534
  22. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 10(4):334
  23. Lee SW, Hahn BD, Kang TY, Lee MJ, Choi JY, Kim MK et al (2014) Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. J Oral Maxillofac Surg 72:53-60
  24. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochem Biophys Sin 43:745-756
  25. MacLeod RJ, Hayes M, Pacheco I (2007) Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 293:G403-G411
  26. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461-465
  27. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023-4032
  28. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119-135
  29. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843-845
  30. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728-1734
  31. Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N et al (2012) Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 188: 6338-6346
  32. Capitao M, Soares R (2016) Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem 117:2443-2453
  33. Son HJ, Kim JW, Kim SJ (2019) Pharmacoepidemiology and clinical characteristics of medication-related osteonecrosis of the jaw. Maxillofac Plast Reconstr Surg 41:26
  34. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR et al (2015) Sequential delivery of immunomodulatory cytokines to facilitate the M1-toM2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194-207
  35. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958-969
  36. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585-601
  37. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204: 1057-1069
  38. Troidl C, Jung G, Troidl K, Hoffmann J, Mollmann H, Nef H et al (2013) The temporal and spatial distribution of macrophage subpopulations during arteriogenesis. Curr Vasc Pharmacol 11:5-12
  39. Jo YY, Kim DW, Choi JY, Kim SG (2019) 4-Hexylresorcinol and silk sericin increase the expression of vascular endothelial growth factor via different pathways. Sci Rep 9:3448
  40. Kzhyshkowska J, , Gudima A, Riabov V, Dollinger C, Lavalle P, Vrana NE. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol 98: 953-962 (2015)
  41. Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN (2015) Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials 37: 116-123
  42. Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB (2012) Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater 8: 2815-2823
  43. Brodbeck WG, Anderson JM (2009) Giant cell formation and function. Curr Opin Hematol 16:53-57
  44. McNally AK, Anderson JM (2011) Macrophage fusion and multinucleated giant cells of inflammation. Adv Exp Med Biol 713:97-111
  45. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y et al (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci U S A 99: 10287-10292
  46. Rodriguez A, Macewan SR, Meyerson H, Kirk JT, Anderson JM (2009) The foreign body reaction in T-cell-deficient mice. J Biomed Mater Res Part A 90: 106-113
  47. Brown BM, Ratner BD, Goodman SB, Amar S, Badylak SF (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 22:3792-3802
  48. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805-820
  49. Price JV, Vance RE (2014) The macrophage paradox. Immunity 41:685-693
  50. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453-461
  51. Aghbali A, Rafieyan S, Mohamed-Khosroshahi L, Baradaran B, Shanehbandi D, Kouhsoltani M (2017) IL-4 induces the formation of multinucleated giant cells and expression of β5 integrin in central giant cell lesion. Med Oral Patol Oral Cir Bucal 22(1):e1-e6
  52. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86: 1105-1109
  53. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481-489
  54. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219-246
  55. Mahbub S, Deburghgraeve CR, Kovacs EJ (2012) Advanced age impairs macrophage polarization. J Interf Cytokine Res 32:18-26
  56. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283-289
  57. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214: 199-210
  58. Klopfleisch R (2016) Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers. Acta Biomater 43: 3-13
  59. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392-404
  60. van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G et al (2006) Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211:487-501
  61. Mills CD (2001) Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol 21:399-425
  62. Adhyatmika A, Putri KS, Beljaars L, Melgert BN (2015) The elusive antifibrotic macrophage. Front Med 2:81
  63. Kim MK, Yoon CS, Kim SG, Park YW, Lee SS, Lee SK (2019) Effects of 4- hexylresorcinol on protein expressions in RAW264.7 cells as determined by immunoprecipitation high performance liquid chromatography. Sci Rep 9:3379
  64. Miron RJ, Bosshardt DD (2016) OsteoMacs: key players around bone biomaterials. Biomaterials 82:1-19
  65. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW et al (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A 84:6020-6024
  66. Takahashi F, Takahashi K, Shimizu K, Cui R, Tada N, Takahashi H et al (2004) Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung 182:173-185
  67. Champagne CM, Takebe J, Offenbacher S, Cooper LF (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30:26-31
  68. Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S et al (2014) Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184:3192-3204
  69. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76-81
  70. Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E (1988) Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones. Development 102:461-470
  71. Louis CA, Mody V, Henry WL Jr, Reichner JS, Albina JE (1999) Regulation of arginase isoforms I and II by IL-4 in cultured murine peritoneal macrophages. Am J Phys 276:R237-R242
  72. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175: 342-349
  73. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y (2010) Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 20:701-712
  74. Kim SG, Hahn BD, Park DS, Lee YC, Choi EJ, Chae WS et al (2011) Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J Oral Maxillofac Surg 69(11): e354-e363
  75. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG et al (2014) Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 11:20130962
  76. Kim SG, Lee SW, Park YW, Jeong JH, Choi JY (2011) 4-Hexylresorcinol inhibits NF-κB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncol Rep 26(6):1527-1532
  77. Ahn J, Kim SG, Kim MK, Kim DW, Lee JH, Seok H et al (2016) Topical delivery of 4-hexylresorcinol promotes wound healing via tumor necrosis factor-α suppression. Burns 42(7):1534-1541
  78. Schneemann M, Schoeden G (2007) Macrophage biology and immunology: man is not a mouse. J Leukoc Biol 81:579
  79. Lichtman MK, Otero-Vinas M, Falanga V (2016) Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen 24(2):215-222
  80. Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B 4(2):120-127
  81. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86-100
  82. Fukano Y, Usui ML, Underwood RA, Isenhath S, Marshall AJ, Hauch KD et al (2010) Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res A 94:1172-1186
  83. Jo YY, Kweon H, Kim DW, Kim MK, Kim SG, Kim JY et al (2017) Accelerated biodegradation of silk sutures through matrix metalloproteinase activation by incorporating 4-hexylresorcinol. Sci Rep 7:42441
  84. Park YW (2015) Bioabsorbable osteofixation for orthognathic surgery. Maxillofac Plast Reconstr Surg 37:6
  85. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14:1835-1842
  86. Jo YY, Kim SG, Kim MK (2017) Botulinum toxin conjugated with silk fibroin and 4-hexylresorcinol. J Craniofac Surg 28(4):e392-e395

Cited by

  1. Increased Level of Vascular Endothelial Growth Factors by 4-hexylresorcinol is Mediated by Transforming Growth Factor-β1 and Accelerates Capillary Regeneration in the Burns in Diabetic Animals vol.21, pp.10, 2020, https://doi.org/10.3390/ijms21103473
  2. Parthenolide Has Negative Effects on In Vitro Enhanced Osteogenic Phenotypes by Inflammatory Cytokine TNF-α via Inhibiting JNK Signaling vol.21, pp.15, 2020, https://doi.org/10.3390/ijms21155433
  3. 4-Hexylresorcinol Administration Increases Dental Hard Tissue Formation and Incisor Eruption Rate in Rats vol.10, pp.16, 2020, https://doi.org/10.3390/app10165511
  4. Inhibitory Effects of 4-Hexylresorcinol on Root Resorption Induced by Orthodontic Tooth Movement vol.10, pp.18, 2020, https://doi.org/10.3390/app10186313
  5. Different level of tumor necrosis factor-α expression after administration of silk sericin fraction in RAW264.7 cells vol.41, pp.1, 2020, https://doi.org/10.7852/ijie.2020.40.3.1
  6. Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells vol.41, pp.2, 2020, https://doi.org/10.7852/ijie.2020.41.2.51
  7. The Effect of Sericin on Bone Regeneration in a Streptozotocin-Induced Type I Diabetes Animal Model vol.11, pp.4, 2020, https://doi.org/10.3390/app11041369
  8. Toll-like receptor and silk sericin for tissue engineering vol.42, pp.1, 2021, https://doi.org/10.7852/ijie.2021.42.1.1
  9. 4-Hexylresorcinol Inhibits Class I Histone Deacetylases in Human Umbilical Cord Endothelial Cells vol.11, pp.8, 2021, https://doi.org/10.3390/app11083486
  10. Alleviation of Oxidative Stress in Dental Pulp Cells Following 4-Hexylresorcinol Administration in a Rat Model vol.11, pp.8, 2021, https://doi.org/10.3390/app11083637
  11. Increased Expression of TGF-β1 by 4-hexylresorcinol Is Mediated by Endoplasmic Reticulum and Mitochondrial Stress in Human Umbilical Endothelial Vein Cells vol.11, pp.19, 2021, https://doi.org/10.3390/app11199128