DOI QR코드

DOI QR Code

Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies

  • Received : 2015.05.04
  • Accepted : 2015.05.07
  • Published : 2015.06.30

Abstract

Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal biomodulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.

Keywords

References

  1. Adada, M., Canals, D., Hannun, Y.A., and Obeid, L.M. (2014). Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim. Biophys. Acta 1841, 727-737. https://doi.org/10.1016/j.bbalip.2013.07.002
  2. Airola, M.V., and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 2013, 57-76.
  3. Allan, D. (2000). Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem. J. 345 Pt 3, 603-610. https://doi.org/10.1042/0264-6021:3450603
  4. Apraiz, A., Idkowiak-Baldys, J., Nieto-Rementeria, N., Boyano, M.D., Hannun, Y.A., and Asumendi, A. (2012). Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem. Cell Biol. 90, 209-223. https://doi.org/10.1139/o2012-001
  5. Asano, S., Kitatani, K., Taniguchi, M., Hashimoto, M., Zama, K., Mitsutake, S., Igarashi, Y., Takeya, H., Kigawa, J., Hayashi, A., et al. (2012). Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol. Cell. Biol. 32, 3242-3252. https://doi.org/10.1128/MCB.00121-12
  6. Ayto, R., and Hughes, D.A. (2013). Gaucher disease and myeloma. Crit. Rev. Oncog. 18, 247-268. https://doi.org/10.1615/CritRevOncog.2013006061
  7. Baek, M.Y., Yoo, H.S., Nakaya, K., Moon, D.C., and Lee, Y.M. (2001). Sphingolipid metabolic changes during chiral C2-ceramides induced apoptosis in human leukemia cells. Arch. Pharm. Res. 24, 144-149. https://doi.org/10.1007/BF02976482
  8. Baran, Y., Salas, A., Senkal, C.E., Gunduz, U., Bielawski, J., Obeid, L.M., and Ogretmen, B. (2007). Alterations of ceramide/ sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J. Biol. Chem. 282, 10922-10934. https://doi.org/10.1074/jbc.M610157200
  9. Baran, Y., Bielawski, J., Gunduz, U., and Ogretmen, B. (2011). Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res. Clin. Oncol. 137, 1535-1544. https://doi.org/10.1007/s00432-011-1016-y
  10. Bezombes, C., Grazide, S., Garret, C., Fabre, C., Quillet-Mary, A., Muller, S., Jaffrezou, J.P., and Laurent, G. (2004). Rituximab antiproliferative effect in B-lymphoma cells is associated with acid- sphingomyelinase activation in raft microdomains. Blood 104, 1166-1173. https://doi.org/10.1182/blood-2004-01-0277
  11. Bleicher, R.J., and Cabot, M.C. (2002). Glucosylceramide synthase and apoptosis. Biochim. Biophys. Acta 1585, 172-178. https://doi.org/10.1016/S1388-1981(02)00338-4
  12. Bonhoure, E., Pchejetski, D., Aouali, N., Morjani, H., Levade, T., Kohama, T., and Cuvillier, O. (2006). Overcoming MDRassociated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20, 95-102. https://doi.org/10.1038/sj.leu.2404023
  13. Boot, R.G., Verhoek, M., Donker-Koopman, W., Strijland, A., van Marle, J., Overkleeft, H.S., Wennekes, T., and Aerts, J.M. (2007). Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J. Biol. Chem. 282, 1305-1312. https://doi.org/10.1074/jbc.M610544200
  14. Borge, M., Remes Lenicov, F., Nannini, P.R., de los Rios Alicandu, M.M., Podaza, E., Ceballos, A., Fernandez Grecco, H., Cabrejo, M., Bezares, R.F., Morande, P.E., et al. (2014). The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. J. Immunol. 193, 3165-3174. https://doi.org/10.4049/jimmunol.1400547
  15. Burns, T.A., Subathra, M., Signorelli, P., Choi, Y., Yang, X., Wang, Y., Villani, M., Bhalla, K., Zhou, D., and Luberto, C. (2013). Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene. J. Lipid Res. 54, 794-805. https://doi.org/10.1194/jlr.M033985
  16. Camgoz, A., Gencer, E.B., Ural, A.U., Avcu, F., and Baran, Y. (2011). Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leuk. Lymphoma 52, 1574-1584. https://doi.org/10.3109/10428194.2011.568653
  17. Carpinteiro, A., Dumitru, C., Schenck, M., and Gulbins, E. (2008). Ceramide-induced cell death in malignant cells. Cancer Lett. 264, 1-10. https://doi.org/10.1016/j.canlet.2008.02.020
  18. Casson, L., Howell, L., Mathews, L.A., Ferrer, M., Southall, N., Guha, R., Keller, J.M., Thomas, C., Siskind, L.J., and Beverly, L.J. (2013). Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS One 8, e54525. https://doi.org/10.1371/journal.pone.0054525
  19. Cattoretti, G., Mandelbaum, J., Lee, N., Chaves, A.H., Mahler, A.M., Chadburn, A., Dalla-Favera, R., Pasqualucci, L., and MacLennan, A.J. (2009). Targeted disruption of the S1P2 sphingosine 1- phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686-8692. https://doi.org/10.1158/0008-5472.CAN-09-1110
  20. Chapman, J.V., Gouaze-Andersson, V., Messner, M.C., Flowers, M., Karimi, R., Kester, M., Barth, B.M., Liu, X., Liu, Y.Y., Giuliano, A.E., et al. (2010). Metabolism of short-chain ceramide by human cancer cells--implications for therapeutic approaches. Biochem. Pharmacol. 80, 308-315. https://doi.org/10.1016/j.bcp.2010.04.001
  21. Chen, L., Luo, L.F., Lu, J., Li, L., Liu, Y.F., Wang, J., Liu, H., Song, H., Jiang, H., Chen, S.J., et al. (2014). FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 9, e103033. https://doi.org/10.1371/journal.pone.0103033
  22. Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45, 11247-11256. https://doi.org/10.1021/bi061307z
  23. Dbaibo, G.S., Kfoury, Y., Darwiche, N., Panjarian, S., Kozhaya, L., Nasr, R., Abdallah, M., Hermine, O., El-Sabban, M., de The, H., et al. (2007). Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult Tcell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92, 753-762. https://doi.org/10.3324/haematol.10968
  24. Degagne, E., and Saba, J.D. (2014). S1pping fire: Sphingosine-1- phosphate signaling as an emerging target in inflammatory bowel disease and colitis-associated cancer. Clin. Exp. Gastroenterol. 7, 205-214. https://doi.org/10.1007/s12328-014-0488-0
  25. Ding, T., Kabir, I., Li, Y., Lou, C., Yazdanyar, A., Xu, J., Dong, J., Zhou, H., Park, T., Boutjdir, M., et al. (2015). All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity. J. Lipid Res. 56, 537-545. https://doi.org/10.1194/jlr.M054627
  26. Dinur, T., Osiecki, K.M., Legler, G., Gatt, S., Desnick, R.J., and Grabowski, G.A. (1986). Human acid beta-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc. Natl. Acad. Sci. USA 83, 1660-1664. https://doi.org/10.1073/pnas.83.6.1660
  27. Duan, R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim. Biophys. Acta 1761, 281-291. https://doi.org/10.1016/j.bbalip.2006.03.007
  28. El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J.J., and Hannun, Y.A. (2000). Molecular cloning and characterization of a human mitochondrial ceramidase. J. Biol. Chem. 275, 21508-21513. https://doi.org/10.1074/jbc.M002522200
  29. Evangelisti, C., Evangelisti, C., Teti, G., Chiarini, F., Falconi, M., Melchionda, F., Pession, A., Bertaina, A., Locatelli, F., McCubrey, J.A., et al. (2014). Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 5, 7886-7901. https://doi.org/10.18632/oncotarget.2318
  30. Futerman, A.H., and Hannun, Y.A. (2004). The complex life of simple sphingolipids. EMBO Rep. 5, 777-782. https://doi.org/10.1038/sj.embor.7400208
  31. Futerman, A.H., and Riezman, H. (2005). The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312-318. https://doi.org/10.1016/j.tcb.2005.04.006
  32. Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.F. (2013). Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 33, 13-20.
  33. Garcia-Bernal, D., Redondo-Munoz, J., Dios-Esponera, A., Chevre, R., Bailon, E., Garayoa, M., Arellano-Sanchez, N., Gutierrez, N.C., Hidalgo, A., Garcia-Pardo, A., et al. (2013). Sphingosine-1- phosphate activates chemokine-promoted myeloma cell adhesion and migration involving alpha4beta1 integrin function. J. Pathol. 229, 36-48. https://doi.org/10.1002/path.4066
  34. Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23. https://doi.org/10.1007/978-1-4419-6741-1_1
  35. Grabowski, G.A. (1993). Gaucher disease. Enzymology, genetics, and treatment. Adv. Hum. Genet. 21, 377-441.
  36. Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322-330. https://doi.org/10.1038/nm823
  37. Gustafsson, K., Christensson, B., Sander, B., and Flygare, J. (2006). Cannabinoid receptor-mediated apoptosis induced by R(+)- methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol. Pharmacol. 70, 1612-1620. https://doi.org/10.1124/mol.106.025981
  38. Gustafsson, K., Sander, B., Bielawski, J., Hannun, Y.A., and Flygare, J. (2009). Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol. Cancer Res. 7, 1086-1098. https://doi.org/10.1158/1541-7786.MCR-08-0361
  39. Hammad, S.M., Pierce, J.S., Soodavar, F., Smith, K.J., Al Gadban, M.M., Rembiesa, B., Klein, R.L., Hannun, Y.A., Bielawski, J., and Bielawska, A. (2010). Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51, 3074-3087. https://doi.org/10.1194/jlr.D008532
  40. Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30. https://doi.org/10.1016/S1388-1981(03)00059-3
  41. Hanada, K., Hara, T., and Nishijima, M. (2000). Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409-8415. https://doi.org/10.1074/jbc.275.12.8409
  42. Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803-809. https://doi.org/10.1038/nature02188
  43. Hannun, Y.A. (1994). The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125-3128.
  44. Hayashi, Y., Okino, N., Kakuta, Y., Shikanai, T., Tani, M., Narimatsu, H., and Ito, M. (2007). Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase. J. Biol. Chem. 282, 30889-30900. https://doi.org/10.1074/jbc.M700832200
  45. Holliday, M.W., Jr., Cox, S.B., Kang, M.H., and Maurer, B.J. (2013). C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines. PLoS One 8, e74768. https://doi.org/10.1371/journal.pone.0074768
  46. Hu, X., Yang, D., Zimmerman, M., Liu, F., Yang, J., Kannan, S., Burchert, A., Szulc, Z., Bielawska, A., Ozato, K., et al. (2011). IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882-2891. https://doi.org/10.1158/0008-5472.CAN-10-2493
  47. Huang, W.C., Tsai, C.C., Chen, C.L., Chen, T.Y., Chen, Y.P., Lin, Y.S., Lu, P.J., Lin, C.M., Wang, S.H., Tsao, C.W., et al. (2011). Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 25, 3661-3673. https://doi.org/10.1096/fj.10-180190
  48. Huitema, K., van den Dikkenberg, J., Brouwers, J.F., and Holthuis, J.C. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33-44. https://doi.org/10.1038/sj.emboj.7600034
  49. Hwang, Y.H., Tani, M., Nakagawa, T., Okino, N., and Ito, M. (2005). Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem. Biophys. Res. Commun. 331, 37-42. https://doi.org/10.1016/j.bbrc.2005.03.134
  50. Ichikawa, S., and Hirabayashi, Y. (1998). Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8, 198-202. https://doi.org/10.1016/S0962-8924(98)01249-5
  51. Ishibashi, Y., Kohyama-Koganeya, A., and Hirabayashi, Y. (2013). New insights on glucosylated lipids: metabolism and functions. Biochim. Biophys. Acta 1831, 1475-1485. https://doi.org/10.1016/j.bbalip.2013.06.001
  52. Ito, M., Okino, N., and Tani, M. (2014). New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim. Biophys. Acta 1841, 682-691. https://doi.org/10.1016/j.bbalip.2013.09.008
  53. Itoh, M., Kitano, T., Watanabe, M., Kondo, T., Yabu, T., Taguchi, Y., Iwai, K., Tashima, M., Uchiyama, T., and Okazaki, T. (2003). Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin. Cancer Res. 9, 415-423.
  54. Jenkins, R.W., Canals, D., and Hannun, Y.A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal. 21, 836-846. https://doi.org/10.1016/j.cellsig.2009.01.026
  55. Kartal, M., Saydam, G., Sahin, F., and Baran, Y. (2011). Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr. Cancer 63, 637-644. https://doi.org/10.1080/01635581.2011.538485
  56. Kitatani, K., Idkowiak-Baldys, J., and Hannun, Y.A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20, 1010-1018. https://doi.org/10.1016/j.cellsig.2007.12.006
  57. Kiyota, M., Kuroda, J., Yamamoto-Sugitani, M., Shimura, Y., Nakayama, R., Nagoshi, H., Mizutani, S., Chinen, Y., Sasaki, N., Sakamoto, N., et al. (2013). FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 18, 1437-1446. https://doi.org/10.1007/s10495-013-0882-y
  58. Kluk, M.J., Ryan, K.P., Wang, B., Zhang, G., Rodig, S.J., and Sanchez, T. (2013). Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab. Invest. 93, 462-471. https://doi.org/10.1038/labinvest.2013.7
  59. Koch, J., Gartner, S., Li, C.M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996). Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J. Biol. Chem. 271, 33110-33115. https://doi.org/10.1074/jbc.271.51.33110
  60. Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B., and Kronke, M. (2006). Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem. 281, 13784-13793. https://doi.org/10.1074/jbc.M511306200
  61. Lafont, E., Milhas, D., Carpentier, S., Garcia, V., Jin, Z.X., Umehara, H., Okazaki, T., Schulze-Osthoff, K., Levade, T., Benoist, H., et al. (2010). Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ. 17, 642-654. https://doi.org/10.1038/cdd.2009.130
  62. Li, Q.F., Wu, C.T., Guo, Q., Wang, H., and Wang, L.S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem. Biophys. Res. Commun. 371, 159-162. https://doi.org/10.1016/j.bbrc.2008.04.037
  63. Liao, A., Broeg, K., Fox, T., Tan, S.F., Watters, R., Shah, M.V., Zhang, L.Q., Li, Y., Ryland, L., Yang, J., et al. (2011). Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118, 2793-2800. https://doi.org/10.1182/blood-2011-01-331447
  64. Liu, Y.Y., Han, T.Y., Giuliano, A.E., and Cabot, M.C. (1999). Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140-1146. https://doi.org/10.1074/jbc.274.2.1140
  65. Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., Lehman, A., Perrotti, D., Chen, C.S., Dalton, J.T., et al. (2008). FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111, 275-284. https://doi.org/10.1182/blood-2006-10-053884
  66. Liu, X., Ryland, L., Yang, J., Liao, A., Aliaga, C., Watts, R., Tan, S.F., Kaiser, J., Shanmugavelandy, S.S., Rogers, A., et al. (2010). Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116, 4192-4201. https://doi.org/10.1182/blood-2010-02-271080
  67. Maceyka, M., and Spiegel, S. (2014). Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67. https://doi.org/10.1038/nature13475
  68. Mao, C., and Obeid, L.M. (2008). Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta 1781, 424-434. https://doi.org/10.1016/j.bbalip.2008.06.002
  69. Matsuoka, Y., Nagahara, Y., Ikekita, M., and Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br. J. Pharmacol. 138, 1303-1312. https://doi.org/10.1038/sj.bjp.0705182
  70. Meng, A., Luberto, C., Meier, P., Bai, A., Yang, X., Hannun, Y.A., and Zhou, D. (2004). Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp. Cell Res. 292, 385-392. https://doi.org/10.1016/j.yexcr.2003.10.001
  71. Meyer zum Buschenfelde, C., Feuerstacke, Y., Gotze, K.S., Scholze, K., and Peschel, C. (2008). GM1 expression of non- Hodgkin's lymphoma determines susceptibility to rituximab treatment. Cancer Res. 68, 5414-5422. https://doi.org/10.1158/0008-5472.CAN-07-5601
  72. Miyaji, M., Jin, Z.X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S.B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E.T., et al. (2005). Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 202, 249-259. https://doi.org/10.1084/jem.20041685
  73. Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A., and Igarashi, Y. (2009). Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91, 784-790. https://doi.org/10.1016/j.biochi.2009.04.001
  74. Mondal, S., Mandal, C., Sangwan, R., Chandra, S., and Mandal, C. (2010). Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol. Cancer 9, 239.
  75. Morell, P., and Radin, N.S. (1970). Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A's by brain microsomes. J. Biol. Chem. 245, 342-350.
  76. Moylan, J.S., Smith, J.D., Wolf Horrell, E.M., McLean, J.B., Deevska, G.M., Bonnell, M.R., Nikolova-Karakashian, M.N., and Reid, M.B. (2014). Neutral sphingomyelinase-3 mediates TNFstimulated oxidant activity in skeletal muscle. Redox Biol. 2, 910- 920. https://doi.org/10.1016/j.redox.2014.07.006
  77. Mullen, T.D., Jenkins, R.W., Clarke, C.J., Bielawski, J., Hannun, Y.A., and Obeid, L.M. (2011). Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J. Biol. Chem. 286, 15929-15942. https://doi.org/10.1074/jbc.M111.230870
  78. Mullen, T.D., and Obeid, L.M. (2012). Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med. Chem. 12, 340-363. https://doi.org/10.2174/187152012800228661
  79. Neviani, P., Santhanam, R., Oaks, J.J., Eiring, A.M., Notari, M., Blaser, B.W., Liu, S., Trotta, R., Muthusamy, N., Gambacorti- Passerini, C., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J. Clin. Invest. 117, 2408-2421. https://doi.org/10.1172/JCI31095
  80. Nilsson, A., and Duan, R.D. (2006). Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 47, 154-171. https://doi.org/10.1194/jlr.M500357-JLR200
  81. Nishimura, H., Akiyama, T., Monobe, Y., Matsubara, K., Igarashi, Y., Abe, M., Sugihara, T., and Sadahira, Y. (2010). Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod. Pathol. 23, 439-449. https://doi.org/10.1038/modpathol.2009.194
  82. Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771. https://doi.org/10.1126/science.8456305
  83. Okazaki, T., Bell, R.M., and Hannun, Y.A. (1989). Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem. 264, 19076-19080.
  84. Park, J.H., and Schuchman, E.H. (2006). Acid ceramidase and human disease. Biochim. Biophys. Acta 1758, 2133-2138. https://doi.org/10.1016/j.bbamem.2006.08.019
  85. Park, J.W., Park, W.J., and Futerman, A.H. (2014). Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681. https://doi.org/10.1016/j.bbalip.2013.08.019
  86. Paugh, S.W., Paugh, B.S., Rahmani, M., Kapitonov, D., Almenara, J.A., Kordula, T., Milstien, S., Adams, J.K., Zipkin, R.E., Grant, S., et al. (2008). A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382-1391. https://doi.org/10.1182/blood-2008-02-138958
  87. Pavlova, E.V., Wang, S.Z., Archer, J., Dekker, N., Aerts, J.M., Karlsson, S., and Cox, T.M. (2013). B cell lymphoma and myeloma in murine Gaucher's disease. J. Pathol. 231, 88-97. https://doi.org/10.1002/path.4227
  88. Pippa, R., Dominguez, A., Christensen, D.J., Moreno-Miralles, I., Blanco-Prieto, M.J., Vitek, M.P., and Odero, M.D. (2014). Effect of FTY720 on the SET-PP2A complex in acute myeloid leukemia; SET binding drugs have antagonistic activity. Leukemia 28, 1915-1918. https://doi.org/10.1038/leu.2014.141
  89. Pitson, S.M. (2011). Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. 36, 97-107. https://doi.org/10.1016/j.tibs.2010.08.001
  90. Pyne, N.J., and Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489-503. https://doi.org/10.1038/nrc2875
  91. Pyne, S., Lee, S.C., Long, J., and Pyne, N.J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21, 14-21. https://doi.org/10.1016/j.cellsig.2008.08.008
  92. Qi, X., and Mochly-Rosen, D. (2008). The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J. Cell Sci. 121, 804-813. https://doi.org/10.1242/jcs.024653
  93. Rodriguez-Cuenca, S., Barbarroja, N., and Vidal-Puig, A. (2015). Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50. https://doi.org/10.1016/j.bbalip.2014.09.021
  94. Ryland, L.K., Doshi, U.A., Shanmugavelandy, S.S., Fox, T.E., Aliaga, C., Broeg, K., Baab, K.T., Young, M., Khan, O., Haakenson, J.K., et al. (2013). C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 8, e84648. https://doi.org/10.1371/journal.pone.0084648
  95. Saba, J.D., and de la Garza-Rodea, A.S. (2013). S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta 1831, 167-175. https://doi.org/10.1016/j.bbalip.2012.06.009
  96. Saddoughi, S.A., Garrett-Mayer, E., Chaudhary, U., O'Brien, P.E., Afrin, L.B., Day, T.A., Gillespie, M.B., Sharma, A.K., Wilhoit, C.S., Bostick, R., et al. (2011). Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin. Cancer Res. 17, 6097-6105. https://doi.org/10.1158/1078-0432.CCR-11-0930
  97. Saddoughi, S.A., and Ogretmen, B. (2013). Diverse functions of ceramide in cancer cell death and proliferation. Adv. Cancer Res. 117, 37-58. https://doi.org/10.1016/B978-0-12-394274-6.00002-9
  98. Savic, R., He, X., Fiel, I., and Schuchman, E.H. (2013). Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One 8, e65620. https://doi.org/10.1371/journal.pone.0065620
  99. Savic, R., and Schuchman, E.H. (2013). Use of acid sphingomyelinase for cancer therapy. Adv. Cancer Res. 117, 91-115. https://doi.org/10.1016/B978-0-12-394274-6.00004-2
  100. Sawai, H., Domae, N., Nagan, N., and Hannun, Y.A. (1999). Function of the cloned putative neutral sphingomyelinase as lysoplatelet activating factor-phospholipase C. J. Biol. Chem. 274, 38131-38139. https://doi.org/10.1074/jbc.274.53.38131
  101. Schulze, H., and Sandhoff, K. (2011). Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 3.
  102. Semac, I., Palomba, C., Kulangara, K., Klages, N., van Echten-Deckert, G., Borisch, B., and Hoessli, D.C. (2003). Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res. 63, 534-540.
  103. Senchenkov, A., Litvak, D.A., and Cabot, M.C. (2001). Targeting ceramide metabolism--a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347-357. https://doi.org/10.1093/jnci/93.5.347
  104. Serra, M., and Saba, J.D. (2010). Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50, 349-362. https://doi.org/10.1016/j.advenzreg.2009.10.024
  105. Shakor, A.B., Taniguchi, M., Kitatani, K., Hashimoto, M., Asano, S., Hayashi, A., Nomura, K., Bielawski, J., Bielawska, A., Watanabe, K., et al. (2011). Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J. Biol. Chem. 286, 36053-36062. https://doi.org/10.1074/jbc.M111.228593
  106. Shakor, A.B., Atia, M., Ismail, I.A., Alshehri, A., El-Refaey, H., Kwiatkowska, K., and Sobota, A. (2014). Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochim. Biophys. Acta 1841, 1672-1682. https://doi.org/10.1016/j.bbalip.2014.09.006
  107. Shammas, M.A., Neri, P., Koley, H., Batchu, R.B., Bertheau, R.C., Munshi, V., Prabhala, R., Fulciniti, M., Tai, Y.T., Treon, S.P., et al. (2006). Specific killing of multiple myeloma cells by (-)- epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood 108, 2804-2810. https://doi.org/10.1182/blood-2006-05-022814
  108. Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24-41. https://doi.org/10.1016/j.jbior.2014.10.002
  109. Siow, D., and Wattenberg, B. (2011). The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit. Rev. Biochem. Mol. Biol. 46, 365-375. https://doi.org/10.3109/10409238.2011.580097
  110. Tafesse, F.G., Ternes, P., and Holthuis, J.C. (2006). The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421-29425. https://doi.org/10.1074/jbc.R600021200
  111. Tani, M., and Kuge, O. (2009). Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem. Biophys. Res. Commun. 381, 328-332. https://doi.org/10.1016/j.bbrc.2009.02.063
  112. Taniguchi, M., and Okazaki, T. (2014). The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration- from cell and animal models to human disorders. Biochim. Biophys. Acta 1841, 692-703. https://doi.org/10.1016/j.bbalip.2013.12.003
  113. Taniguchi, M., Kitatani, K., Kondo, T., Hashimoto-Nishimura, M., Asano, S., Hayashi, A., Mitsutake, S., Igarashi, Y., Umehara, H., Takeya, H., et al. (2012). Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem. 287, 39898-39910. https://doi.org/10.1074/jbc.M112.416552
  114. Taouji, S., Higa, A., Delom, F., Palcy, S., Mahon, F.X., Pasquet, J.M., Bosse, R., Segui, B., and Chevet, E. (2013). Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J. Biol. Chem. 288, 17190-17201. https://doi.org/10.1074/jbc.M112.409185
  115. Tettamanti, G., Bassi, R., Viani, P., and Riboni, L. (2003). Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423- 437. https://doi.org/10.1016/S0300-9084(03)00047-6
  116. Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W. (1998). Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. USA 95, 3638- 3643. https://doi.org/10.1073/pnas.95.7.3638
  117. Truman, J.P., Garcia-Barros, M., Obeid, L.M., and Hannun, Y.A. (2014). Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta 1841, 1174- 1188. https://doi.org/10.1016/j.bbalip.2013.12.013
  118. Tsukamoto, S., Hirotsu, K., Kumazoe, M., Goto, Y., Sugihara, K., Suda, T., Tsurudome, Y., Suzuki, T., Yamashita, S., Kim, Y., et al. (2012). Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cdelta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem. J. 443, 525-534. https://doi.org/10.1042/BJ20111837
  119. Turzanski, J., Grundy, M., Shang, S., Russell, N., and Pallis, M. (2005). P-glycoprotein is implicated in the inhibition of ceramideinduced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp. Hematol. 33, 62-72. https://doi.org/10.1016/j.exphem.2004.10.005
  120. Vacaru, A.M., Tafesse, F.G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J.F., Somerharju, P., Rabouille, C., and Holthuis, J.C. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013- 1027. https://doi.org/10.1083/jcb.200903152
  121. Wallington-Beddoe, C.T., Hewson, J., Bradstock, K.F., and Bendall, L.J. (2011). FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells. Autophagy 7, 707-715. https://doi.org/10.4161/auto.7.7.15154
  122. Wallington-Beddoe, C.T., Don, A.S., Hewson, J., Qiao, Q., Papa, R.A., Lock, R.B., Bradstock, K.F., and Bendall, L.J. (2012). Disparate in vivo efficacy of FTY720 in xenograft models of Philadelphia positive and negative B-lineage acute lymphoblastic leukemia. PLoS One 7, e36429. https://doi.org/10.1371/journal.pone.0036429
  123. Wallington-Beddoe, C.T., Powell, J.A., Tong, D., Pitson, S.M., Bradstock, K.F., and Bendall, L.J. (2014). Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res. 74, 2803-2815.
  124. Wang, Q., Zou, J., Zhang, X., Mu, H., Yin, Y., and Xie, P. (2014). Glucosylceramide synthase promotes Bcl-2 expression via the ERK signaling pathway in the K562/A02 leukemia drug-resistant cell line. Int. J. Hematol. 100, 559-566. https://doi.org/10.1007/s12185-014-1679-7
  125. Watanabe, M., Kitano, T., Kondo, T., Yabu, T., Taguchi, Y., Tashima, M., Umehara, H., Domae, N., Uchiyama, T., and Okazaki, T. (2004). Increase of nuclear ceramide through caspase- 3-dependent regulation of the "sphingomyelin cycle" in Fasinduced apoptosis. Cancer Res. 64, 1000-1007. https://doi.org/10.1158/0008-5472.CAN-03-1383
  126. Watters, R.J., Fox, T.E., Tan, S.F., Shanmugavelandy, S., Choby, J.E., Broeg, K., Liao, J., Kester, M., Cabot, M.C., Loughran, T.P., et al. (2013). Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk. Lymphoma 54, 1288-1296. https://doi.org/10.3109/10428194.2012.752485
  127. Wu, B.X., Rajagopalan, V., Roddy, P.L., Clarke, C.J., and Hannun, Y.A. (2010). Identification and characterization of murine mitochondria- associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J. Biol. Chem. 285, 17993-18002. https://doi.org/10.1074/jbc.M110.102988
  128. Yamaji, T., and Hanada, K. (2014). Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 9, e88124. https://doi.org/10.1371/journal.pone.0088124
  129. Yamaji, T., and Hanada, K. (2015). Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16, 101-122. https://doi.org/10.1111/tra.12239
  130. Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H., and Okazaki, T. (2004). Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase- defective lymphoid cells. J. Biol. Chem. 279, 18688-18693. https://doi.org/10.1074/jbc.M401205200
  131. Yildiz, Y., Matern, H., Thompson, B., Allegood, J.C., Warren, R.L., Ramirez, D.M., Hammer, R.E., Hamra, F.K., Matern, S., and Russell, D.W. (2006). Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J. Clin. Invest. 116, 2985-2994. https://doi.org/10.1172/JCI29224
  132. Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948. https://doi.org/10.1158/1078-0432.CCR-12-0655
  133. Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350. https://doi.org/10.1083/jcb.200705060
  134. Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948. https://doi.org/10.1158/1078-0432.CCR-12-0655
  135. Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350. https://doi.org/10.1083/jcb.200705060
  136. Zembruski, N.C., Nguyen, C.D., Theile, D., Ali, R.M., Herzog, M., Hofhaus, G., Heintz, U., Burhenne, J., Haefeli, W.E., and Weiss, J. (2013). Liposomal sphingomyelin influences the cellular lipid profile of human lymphoblastic leukemia cells without effect on P-glycoprotein activity. Mol. Pharm. 10, 1020-1034. https://doi.org/10.1021/mp300485j
  137. Zhang, Y.Y., Xie, K.M., Yang, G.Q., Mu, H.J., Yin, Y., Zhang, B., and Xie, P. (2011). The effect of glucosylceramide synthase on P-glycoprotein function in K562/AO2 leukemia drug-resistance cell line. Int. J. Hematol. 93, 361-367. https://doi.org/10.1007/s12185-011-0798-7
  138. Zhang, P., Chen, Y., Cheng, Y., Hertervig, E., Ohlsson, L., Nilsson, A., and Duan, R.D. (2014). Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice. Am. J. Physiol. Gastrointest Liver Physiol. 306, G903-908. https://doi.org/10.1152/ajpgi.00319.2013
  139. Zumbansen, M., and Stoffel, W. (2002). Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol. Cell Biol. 22, 3633-3638. https://doi.org/10.1128/MCB.22.11.3633-3638.2002

Cited by

  1. Plasma and ovarian tissue sphingolipids profiling in patients with advanced ovarian cancer vol.147, pp.1, 2017, https://doi.org/10.1016/j.ygyno.2017.07.143
  2. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0177805
  3. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells vol.7, 2016, https://doi.org/10.3389/fendo.2016.00067
  4. Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia vol.14, pp.11, 2016, https://doi.org/10.3390/md14110205
  5. ACER3 supports development of acute myeloid leukemia vol.478, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.07.099
  6. Sphingomyelin generated by sphingomyelin synthase 1 is involved in attachment and infection with Japanese encephalitis virus vol.6, pp.1, 2016, https://doi.org/10.1038/srep37829
  7. Regulation of membrane KCNQ1/KCNE1 channel density by sphingomyelin synthase 1 vol.311, pp.1, 2016, https://doi.org/10.1152/ajpcell.00272.2015
  8. Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study vol.0, pp.0, 2018, https://doi.org/10.1515/cclm-2018-0509
  9. Sphingosine kinase 1 overexpression contributes to sunitinib resistance in clear cell renal cell carcinoma pp.2162-402X, 2018, https://doi.org/10.1080/2162402X.2018.1502130
  10. Ceramide synthase-6 confers resistance to chemotherapy by binding to CD95/Fas in T-cell acute lymphoblastic leukemia vol.9, pp.9, 2018, https://doi.org/10.1038/s41419-018-0964-4
  11. Holotoxin A1 Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells vol.16, pp.4, 2018, https://doi.org/10.3390/md16040123
  12. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma vol.8, pp.15, 2015, https://doi.org/10.18632/oncotarget.15334
  13. Wide-transcriptome analysis and cellularity of bone marrow CD34+/lin- cells of patients with chronic-phase chronic myeloid leukemia at diagnosis vs. 12 months of first-line nilotinib treatment vol.21, pp.1, 2015, https://doi.org/10.3233/cbm-170209
  14. Ceramide generation as a novel biological mechanism for chemo-preventive and cytotoxic effects of hesperidin on HT-144 melanoma cells vol.7, pp.4, 2015, https://doi.org/10.1016/j.bjbas.2018.07.008
  15. Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer vol.17, pp.1, 2015, https://doi.org/10.1158/1535-7163.mct-17-0173
  16. Ceramide Suppresses Influenza A Virus Replication In Vitro vol.93, pp.7, 2015, https://doi.org/10.1128/jvi.00053-19
  17. Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia vol.3, pp.17, 2019, https://doi.org/10.1182/bloodadvances.2018021295
  18. Deficiency of sphingomyelin synthase 2 prolongs survival by the inhibition of lymphoma infiltration through ICAM‐1 reduction vol.34, pp.3, 2015, https://doi.org/10.1096/fj.201901783rr
  19. Ceramide and Sphingosine 1-Phosphate in Liver Diseases vol.43, pp.5, 2020, https://doi.org/10.14348/molcells.2020.0054
  20. 8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells vol.8, pp.11, 2015, https://doi.org/10.3390/biomedicines8110506
  21. Cytokine Levels at Birth in Children Who Developed Acute Lymphoblastic Leukemia vol.30, pp.8, 2015, https://doi.org/10.1158/1055-9965.epi-20-1704
  22. MLL-AF4+ infant leukemia: a microRNA affair vol.138, pp.21, 2015, https://doi.org/10.1182/blood.2021012818