• Title/Summary/Keyword: Cell cycle regulatory protein

Search Result 93, Processing Time 0.023 seconds

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

Cell cycle regulatory element in the promoter of the human thymidine kinase gene and its binding to factors

  • Kim, Yong-Kyu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.9-15
    • /
    • 1995
  • When quiescent cells ate stimulated to enter the cell cycle, the thymidine kinase(TK) gene is transcriptionally activated at the border of Gl and 5. In this report we show that the human TK promoter contains multiple protein-binding sites. By site-directed mutagenesis, we identified a protein-binding site on the human TK promoter requited for conferring Gl-S-regulated transcription to a heterologous promoter and dissociated it functionally from an adjacent protein-binding domain containing an inverted CCAAT motif requited for high basal level expression. Substitution-mutation of this site results in constitutive expression of the neo reporter gene in serum-stimulated fibroblasts, as well as in cells arrested in mid-Gl by a temperature-sensitive mutation. The regulatory domains for the human TK promoter exhibit interesting symmetrical features, including a set of CCAAT motifs and sites similar to the novel Yi protein-binding site recently discovered in the mouse TK promoter. Thus, components of the hTK complex is important for hTK gene regulation.

  • PDF

Synthesis of Novel Pyrazolinecarbothioamide and Evaluation of Its Anti-Cancer Activity (새로운 피라졸린카르보티오아미드 화합물의 합성과 항암효과)

  • Koh, Dongsoo
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.191-194
    • /
    • 2012
  • Novel pyrazolinecarbothioamide (5) was synthesized from chalcone (3) which was prepared from 2'-hydroxy-1'-acetonaphthone (1) and 2-methoxy benzaldehyde (2). Treatment of pyrazolinecarbothioamide (5) on HCT116 cancer cell showed upregulation of p21 and downregulation of cyclin D1 protein. Flowcytometer analysis revealed that pyrazolinecarbothioamide (5) controls the expression of cell cycle regulatory proteins, which blocks cell cycle progression of HCT116 cancer cell at the G1 phase.

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

Cell Cycle Regulation in the Budding Yeast

  • Nguyen, Cuong;Yoon, Chang-No;Han, Seung-Kee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.278-283
    • /
    • 2005
  • Cell cycle is regulated cooperatively by several genes. The dynamic regulatory mechanism of protein interaction network of cell cycle will be presented taking the budding yeast as a sample system. Based on the mathematical model developed by Chen et at. (MBC, 11,369), at first, the dynamic role of the feedback loops is investigated. Secondly, using a bifurcation diagram, dynamic analysis of the cell cycle regulation is illustrated. The bifurcation diagram is a kind of ‘dynamic road map’ with stable and unstable solutions. On the map, a stable solution denotes a ‘road’ attracting the state and an unstable solution ‘a repelling road’ The ‘START’ transition, the initiation of the cell cycle, occurs at the point where the dynamic road changes from a fixed point to an oscillatory solution. The 'FINISH' transition, the completion of a cell cycle, is returning back to the initial state. The bifurcation analysis for the mutants could be used uncovering the role of proteins in the cell cycle regulation network.

  • PDF

Retinoic Acid Increases the Cell Cycle Progression of Human Gingival Fibroblasts by Increasing Cyclin E and CDK 2 Expression and Decreasing $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ Expression

  • You, Hyung-Keun;Seo, Se-Jeong;Kim, Kang-Ju;Choi, Na-Young;You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2012
  • Retinoic acid plays an important role in the regulation of cell growth and differentiation. In our present study, we evaluated the effects of all-trans retinoic acid (RA) on cell proliferation and on the cell cycle regulation of human gingival fibroblasts (HGFs). Cell proliferation was assessed using the MTT assay. Cell cycle analysis was performed by flow cytometry, and cell cycle regulatory proteins were determined by western blot. Cell proliferation was increased in the presence of a 0.1 nM to 1 ${\mu}M$ RA dose range, and maximal growth stimulation was observed in cells exposed to 1 nM of RA. Exposure of HGFs to 1 nM of RA resulted in an augmented cell cycle progression. To elucidate the molecular mechanisms underlying cell cycle regulation by RA, we measured the intracellular levels of major cell cycle regulatory proteins. The levels of cyclin E and cyclin-dependent kinase (CDK) 2 were found to be increased in HGFs following 1 nM of RA treatment. However, the levels of cyclin D, CDK 4, and CDK 6 were unchanged under these conditions. Also after exposure to 1 nM of RA, the protein levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ were decreased in HGFs compared with the control group, but the levels of p53 and pRb were similar between treated and untreated cells. These results suggest that RA increases cell proliferation and cell cycle progression in HGFs via increased cellular levels of cyclin E and CDK 2, and decreased cellular levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$.

Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1

  • Jee, Hyang;Lee, Su-Hyung;Park, Jun-Won;Lee, Bo-Ram;Nam, Ki-Taek;Kim, Dae-Yong
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and $p21^{Cip1}$ and $p27^{Kip1}$ expression levels were examined by bromodeoxyuridine assay, flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as their location. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. $G^1$ arrest, up-regulation of cell cycle-regulatory proteins $p21^{Cip1}$ and $p27^{Kip1}$ was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.

In vivo action of RNA G-quadruplex in phloem development

  • Cho, Hyunwoo;Cho, Hyun Seob;Hwang, Ildoo
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.547-548
    • /
    • 2018
  • Phloem network integrates cellular energy status into post-embryonic growth, and development by tight regulation of carbon allocation. Phloem development involves complicated coordination of cell fate determination, cell division, and terminal differentiation into sieve elements (SEs), functional conduit. All of these processes must be tightly coordinated, for optimization of systemic connection between source supplies and sink demands throughout plant life cycle, that has substantial impact on crop productivity. Despite its pivotal role, surprisingly, regulatory mechanisms underlying phloem development have just begun to be explored, and we recently identified a novel translational regulatory network involving RNA G-quadruplex and a zinc-finger protein, JULGI, for phloem development. From this perspective, we further discuss the role of RNA G-quadruplex on post-transcriptional control of phloem regulators, as a potential interface integrating spatial information for asymmetric cell division, and phloem development.