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ABSTRACT: Cell cycle is regulated cooperatively
by several genes. The dynamic regulatory
mechanism of protein interaction network of cell
cycle will be presented taking the budding yeast as a
sample system. Based on the mathematical model
developed by Chen et al. (MBC, 11, 369), at first, the
dynamic role of the feedback loops is investigated.
Secondly, using a bifurcation diagram, dynamic
analysis of the cell cycle regulation is illustrated. The
bifurcation diagram is a kind of ‘dynamic road map’
with stable and unstable solutions. On the map, a
stable solution denotes a ‘road’ attracting the state
and an unstable solution ‘a repelling road’. The
‘START’ transition, the initiation of the cell cycle,
occurs at the point where the dynamic road changes
from a fixed point to an oscillatory solution. The
‘FINISH’ transition, the completion of a cell cycle,
is returning back to the initial state. The bifurcation
analysis for the mutants could be used uncovering
the role of proteins in the cell cycle regulation
network.

1. INTRODUCTION

The cell cycle is the sequence of events by which a
growing cell duplicates all its components and then
divides into two daughter cells so that they can
repeat the process.

The cell cycle usually divided into 4 phases, G1,
S, G2 and M. Where G1 and G2 are gaps in which
cell prepares materials for the next coming phases.
During S phase, cell duplicates their genetic
materials and they will be separated into two
daughter cells in M phase. In fact, S, G2 and M
phases in budding yeast are regarded as only one
phase called S/M phase in budding yeast because it’s
hard to distinguish them clearly. And budding yeast
cell division is asymmetric by which the mother cell
divides into a small “daughter” cell and a large
“mother” cell.

Figure 1 Budding yeast cell division is asymmetric.
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Consider the small “daughter” cell in G1 phase
(Fig. 1). The small cell grows up until meet the G1
checkpoint (Is the cell is big enough? Is DNA
undamaged? If yes), the cell executes START. A
bud emerges and keeps growing; the cell starts DNA
synthesis; the spindle pole duplicates and mitosis
commences. At the M checkpoint chromosome must
be properly aligned on mitotic spindle and DNA
synthesis is complete. If yes, the cell processes
through anaphase, telophase and cell separation.

In the budding yeast, a single CDK, Cdc28,
which is in conjunction with two families of cyclins:
ClInl-3 and CIbl-6, control the major cell cycle
events. CIn1/Cdc28 and CIn2/Cdc28 play major
roles in budding and spindle pole body duplication.
Cln3/Cdc28 seems to govern the size at which
newbomn cells execute START. CIbS/Cdc28 and
C1b6/Cdc28 are essential for timely DNA replication.
Clb3/Cdc28 and Clb4/Cdc28 seem to assist in DNA
replication and spindle formation. Clb1/Cdc28 and
CIb2/Cdc28 are necessary for proper completion of
mitosis. Based on that, a protein-protein wire-
diagram interaction network (Fig.2) was constructed
and it was cast into a set of ordinary differential
equations, 11 dynamic variables, with numbers of
kinetic parameters (Chen et al. MBC 2000, table 1
and 2). This mathematical model is an intensive
model that explains correctly wild type phenotype as
well as many mutant phenotypes by doing simulation.
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Figure 2 The protein-protein interaction network.
CDK Cdc28 is not present because it is in excess
(assumption). This network can be read from left to
right.



Figure 3: Phase trajectory of wild type, presents the
concentrations of cyclins, CLB5 and CLB2, varying
when the cell size increases with time. This can be
done easily be solving system ODE:s.

However, by doing simulation does not give out
the underlying mechanism that controls cell cycle.
Doing bifurcation analysis reveals not only the
underlying mechanism but also the mechanism that
controls the START and FINISH transitions. Further
more, the bifurcation analysis turns out several
interesting issues, is the temporal behavior transient
of not? What is the abnormality at START and
FINSH transitions, the dynamical organization of
cell cycle?... Those issues are very like dynamic
road map (fig. 4).

Figure 4: The dynamic road map. There are many
“roads” that the system can moves along but it gets
to the same destination.

2. THE CORE OF THE CELL
CYCLE

There are two major and important events in
budding yeast cell cycle, they are G1/S transition,
START, by which the activities of cyclin dependent
kinases (CDK) rise up abruptly causing budding,
DNA synthesis and drive the cell into M phase, and
exiting M phase, FINISH, by which the activities of
a cyclin dependent kinase drop down dramatically
causing separation of genetic materials (DNA) into
two daughter cells then dividing a cell into two cells
completely.

To generate those behaviors, CDK activities
rising up abruptly and CDK activities dropping down
dramatically, the best way is introduce a positive
feedback loop for the former and a negative feedback
loop for the later one.

Positive feedback loops

Positive feedback loops are fairly common in
bacterial gene regulatory networks and have been
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reported in a number of eukaryotic signaling
pathways (Ferrell and Machleder, 1998; Ferrel,
2002) as well as in protein-protein interaction
networks (Chen 2000, Bela Novak and J.Tyson,
2001). So, why should evolution have selected for it?
The answer is simple; positive feedback can be used
to generate bi-stability. That is a device which can
turn a graded signal into an all-or-nothing response.
Bi-stability implies two states, usually a high state
and a low state. At any one time, only one state can
exist, although both states are accessible at the same
parameter values. Both states are generally very
stable and movement from one state to the other
tends to be difficult.

The positive feedback shows bi-stability in the
region 0.39<MASS<0.77 for a positive feedback
loop MASS—CLB5—MBF—CLBS (figure 5A, left
panel). In which the system can be either low-fixed
point or higher fixed point. The concentration of
CIb5 is increasing continuously until the mass
reaches to SN1, at this moment the concentration of
CIbS changes abruptly from low to higher level and
it’s hard to slip back if the MASS is slightly decrease,
unless MASS decrease down to SN2. This can be
easily seen from the null-cline plot, figure SA middle
panel. The mathematical model and its parameters
can be found in table 1.

Oscillation in delayed-negative feedback
loop

Delayed-negative feedback loops can be found in
many applications and its role is to generate
oscillating behavior. Recently, delayed negative
feedback loop are found in transcription-gene
networks, signaling pathway, metabolic ... Delayed
term keeps the system oscillating with time as shown
in the figure 5B, left panel shows a delayed negative
feedback loop, middle panel shows time oscillating
trajectories of system by solving ODE and 1-
parameter bifurcation is plotted in the right panel.
Firstly, concentration of Clb2 is rising up and turns
on the intermediate enzyme IEP, which lately
increases and again turns on Cdc20 which will
decrease concentration of CIb2 by degrading. Once
Clb2 decreases, IEP is off and consequently Cdc20 is
off then CIb2 increase again to make another cycle,
figure 5B-middle panel. The delayed term is very
important to maintain oscillating. This is shown by
1-parameter (MASS) bifurcation in the figure 5B-
right panel, it shows that there is no oscillation
unless the MASS is big enough (>0.56, Hopf-
bifurcation point), CIb2 is big enough, to turn on IEP
to start oscillating. The mathematical model and its
parameters can be found in table 1.

Jump ‘n’ run away

The cell cycle consists 2 periods, G1 and S/G2/M.
During Gl, the activities (concentration) of cyclins
are low meanwhile during the S/G2/M phase the
activities of cyclins are firstly increasing then
decreasing to get cell division. This behavior look
like jump ‘n’ run away of cyclin’s activities, it jumps
from low state to a higher one and goes up and down
until division.



By combining both positive feedback loop and
delayed-negative feedback loop, the “jump ‘n’ run
away” behavior can be shown, figure 5C. The
middle panel shows the 1-parameter bifurcation
diagram of that system. The activities of cyclins,
Clb2, is gradually increasing from lower state (G1)
when the MASS is increasing up to 3.29, abruptly
ClIb2 activities jump into limit cycle and “run away”
(S/G2/M). On the figure 5C right panel, we are
presenting 2-parameters bifurcation diagram of the
system by taking MASS and one of feedback loop
strength, positive and negative one. Firstly, fixing
k. Ep, the strength of negative feedback, we were
varying MASS and k, mcw, the positive feedback
strength, to get bifurcation diagram (blue-solid line),

it shows a bi-stability region of 0.49<k, yicm. As
k, mcm is smaller and smaller, the MASS is larger
and larger to have bi-stability. At k, mcm~0.49, the
saddle node 1, SN1, and the second one, SN2 joint
together and disappear, it means that the positive
feedback strength is not strong enough to turn on the
feedback. Similarly, fixing k, mem, We were varying
MASS and k, gp to get the 2-parameters bifurcation
diagram (red-dashed line). It turns out that what ever
the negative feedback strength is, we do have
oscillating behavior with the note that, at the point of
~0.5, the first hopf-bifurcation point joints with the
second saddle-node, SN2. The mathematical model
and its parameters can be found in table 1.

4
-
! 1.5
' 5 g
- t = Sy
B ! Masimy SN2
MASS et
' ; |
0 15 0 0.39 077 1 15
CiLBS MASS
1.3
il 17
H 1)
t
1 A 0t 8 B T S S SN S et g e e
i o~ e
! 0 o
! ()
H 03
1
v o.7]
- o]
R R R Y R Y TR Y R T
e 1.2 2
wat 0T e, K, e ¥ pon™?
I 1 -
! o, ves*® Hp2 15 SN1
.
' osl s 1 k=122
! ' T \ 37
' Koge v g . SN1 1 HB1  jHB2
m.azs.‘v .___...__.__—_. s 0.6 ! ' ko7
. ‘ / ; 05 SNz T
- H = - <, ——X
H* K uen o4 ! Ko mcu=0-63 K, mom ! 2 K=049
im ! Kpep =1 el ! E
0.2 ; o X
1 2 320 4 [ () 2 8 10
MASS MASS

Figure 5. Wire diagrams and bifurcation analysis of feedback loops. In this tableau, the rows correspond to (4)
positive feedback loop, (B) delayed-negative feedback loop and (C) Jump ‘n’ run away. The columns present wiring
diagrams (left); null-cline (4), time trajectory (B) and 1-parameter bifurcation (C) (middle); and 1-parameter
bifurcation (4,B) and 2-parameters bifurcation (C, D, F) (right).

3. BIFURCATION ANALYSIS

A primary goal of dynamical systems theory is
to characterize the kinds of solutions one can expect
to find for a system of nonlinear differential
equations,. We are primarily interested in
“recurrent’” solutions: both steady states (where
variables are unchanging in time) and oscillatory
states (where variables = repeat themselves
periodically in time). Recurrent solutions can be
either stable or unstable. Stable steady states
correspond to conditions of cell cycle arrest, e.g., G1
state. Stable oscillatory solutions correspond to
unmonitored cell divisions, e.g., S/M state.
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A bifurcation is a qualitative change in the
behavior of solutions of a dynamics system as one or
more parameters are varied. The parameter values at
which these changes occur are called bifircation
points. If the qualitative change occurs in a
neighborhood of a fixed point or periodic solution, it
is called a local bifurcation. Another way to think of
a bifurcation is the following: As one or more
control parameters are varied, a fixed point may
become non-hyperbolic for a certain parameter value.
If the state space portraits are qualitatively different
before and after this location then this point is called
a bifurcation point and the qualitative change is
called a bifurcation. And it is also possible to define




a concept of structural stability (robustness) of the
system itself. A system is said to be structurally
stable is for any small change in parameter space, the
qualitative features of the new system are equivalent
to the initial system. The XPPAUTO is a very
powerful tool to find out bifurcation diagram, which
we are using.

(green cycle, M>1). The lower steady state
corresponds to G1 state, where the activities of Clbs
cyclin are not fluctuating in time. The oscillatory
state corresponds S/M state, where the increasing of
CIbS activity executes START, the increasing of
CIb2 activity causes spindle formation (M phase)
and the decreasing of CIb2 activity drives the cell

By taking the mass of cell as a controlling division (FINISH).

parameter, mass is varying, we found bifurcation
diagram for the wild type budding yeast cell cycle,
see fig. 6. Base on that, the budding yeast cell cycle
is characterized by two kinds of solutions, steady
state (solid blue line, MASS<1) and oscillatory state

Table 1. Mathematical models of feedback loops

Figure 5A. Positive feedback loop

dcdltbS = (k. + K.MBF)-mass - k,CIbS

dMBF _ k,CLB5(1~ MBF) _k,MBF
dt J,+1- MBF J, + MBF

Parameters (min"'): k's=0.1, k”s=0.2, k4=0.2, k;=0.8, k;=0.5
Dimensionless parameters: J, = J; = 0.01

Figure 5B. Delayed-negative feedback loop

dC1b2
=k MASS — (Kgyy + Kuea0sCdc20)C b2
dCdc20 _ (k.0 /EP)(1-Cdc20)  k,,,Cdc20
dt Joro +1-Cdc20 Jizo + Cdc20
dIEP _ k,,Clb2(1- IEP)  k,, IEP
dt Joey +1- IEP J ey + IEP

Parameters (min"): ksb2=1, kgp2=0-5, kdc20b2=2, K'ac20=0.01, k"3c20=0-25, kic20=0.1, Kajep=1.kjiep=1

Dimensionless parameters: Jac20= Jic20= Jaiep™ Jiiep =0-01

Figure 5C. Jump ‘n’ run away

dcdlth =k, ,MASS + k., * MCM = (kgy, + kyopy,,Cdc20)CIH2
dCdc20 _ (kupolEP)(1-Cdc20) k5, Cdc20
dt Jac2o +1-Cdc20 Jicqo + Cdec20
dIEP _ k,,CIb2(1~IEP)  k, IEP
dt Joep + 1 IEP J ey + IEP
AMCM _ kupenC162(1- MCM) k., MCM
dt Jomem +1—-MCM Timem + MCM

Parameters (min’'): k=1, k;=0.5, ksb2=0.4, K”2=1, kap2=2, Kac2002=2, Kac20=0.25, Kic200.1, Kiiep=1, Kiiep=1

Dimensionless parametess: Jyie,=Jiiep =Jac20=Jic20 =0.005, Jynem= Jimem =0.01
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Figure 6: The underlying mechanism of budding
yeast cell cycle. The cell cycle is characterized by
two kinds of solutions, steady state-solid blue line,
MASS<1 (Gl) and oscillatory state-green cycle,
M>1 (S/M). Clbs activities are low in Gl phase, as
cell growing (mass increasing); cell cycle changes
its state from steady one to oscillatory one, jump ‘n’
run away. At first, CIb5 activity raises up (START),
Jollowing is rising up of Clb2 activity (M phase) and
then CIb2 activity drops under a certain threshold
causing cell division. As soon after division, cell get
to G1 state and make another cycle. Solid-red line is
cyclins time-trajectory computed by doing simulation.

By analyzing bifurcation diagram, we do not
only understand the underlying mechanism of cell
cycle but also we can recover how the START and
FINISH transitions are trigged as discussed below.

START transition

How the cell gets into an oscillatory state from a
stable steady state (fixed point)? The answer is that
the oscillations bifurcate from a “homo-clinic
connection”. See the bifurcation diagram and phase
plane in Fig. 7.

Projecting the whole bifurcation diagram on 2
dimension space of MASS and CLB2, and zoon in at
the moment of START, see fig 7. right panel, it
shows that be cause of stability disappearance after
colliding of an stable fixed point (lower solid line)
and a unstable fixed point (a little bit higher dashed
line) at the first saddle node bifurcation point, SN1,
the cell cycle jumps from a lower state (low
activities of CLB2) up to a small limit cycle
(emerging from HB1, filled-cycle) then “run” along
the small limit cycle to big limit cycle away.
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Figure 7: Oscillation bifurcates from a homo-clinic
connection. The left panel is bifurcation diagram of
cell cycle. The right one is zoomed part of the left
one. Showing “jump and run away” behavior.

So as mass m increasing, the control system changes
from the stable fixed point to a small limit cycle via

a saddle-node (SN), after that, it gets into a big limit
cycle via a homo-clinic connection.

Abnormality at FINISH transition

The best way to test whether the math model of the
cell cycle is properly constructed is taking into
account for all available mutations of the cell. Chen
was successful to explain about 50 mutations
through her math model, one of them is deleting the
gene which directly involve into the negative
feedback loop at FINISH transition. As it is
predicted, once the negative feedback loop is broken
down, there is no oscillating behavior therefore the
cell can not get to the division. This is confirmed
through out the IEP mutant bifurcation diagram, see
figure 9C. The cell start from lower stable state
(lowest solid line) then jump up to higher state (top
solid line) and never turn back because negative
feedback was broken.
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Figure 9: IEP mutant, cell is dead. (4) IEP mutation
cyclins trajectories, simulated from the cell cycle
math model. (C) 1-parameter bifurcation diagram of
IEP mutation, cause of no big oscillation, cyclins
activities can not get back to lower state, cell is dead.

4. DISCUSSION

The whole cell cycle model is well constructed
modularly. To well understand the whole system,
it’d better to take into account for each modules
rather than whole one at a time. We were successful
to explain the whole cell cycle model by doing
bifurcation analysis of positive, delayed-negative
and cascade of both feedback loops. By that the
whole cell cycle is characterized by two states, a
steady state, in which the activities of Clbs proteins
are very low and unchanged, and a stable oscillatory
state, in which the activities of Clbs proteins are
varying, increasing of CIb5 activity causes DNA
replication, increasing of CIb2 activity causes the
formation of spindle (M phase) and CIb2 activity
decreasing causes the cell division, fig.5. START
and FINISH transitions was also investigated. It
turns out that, the underlying mechanism is changing
of properties of solutions, from a unstable fixed point
to a stable fixed point (CLN3 suppression, IEP
mutation), from an unstable fixed point to a stable
oscillatory state (CLN3 over-expression).

By doing bifurcation analysis, the underlying
mechanism of controlling of cell cycle, switch-like
mechanism between two phases Gl and S/M, the
mechanism of START and FINISH transition,
changing dynamical properties of solutions, were
discovered.




The bifurcation analysis is a useful
mathematical tool that helps us understand more
clearly about not only the cell cycle but also the
dynamic systems described by ODEs. Especially, it’s
useful for biologists, who carry out experiments.
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