• Title/Summary/Keyword: Cell and their function

Search Result 684, Processing Time 0.033 seconds

Draft Proposal of Smart Outdoor Wear upon the Outdoor Wear Functionality Demand (아웃도어 웨어 기능성 요구에 따른 스마트 아웃도어 재킷 설계시안)

  • Paek, Kyung Ja;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.446-455
    • /
    • 2014
  • This study revealed the results related to the functionality of outdoor wear required when man and women in their 30s to 50s engage in outdoor activities. Based on the results of the survey, we proposed composition draft for a smart outdoor jacket with main functions of GPS device and light-emitting device using solar cell and EL. Absorption and release of sweat, functionality regarding rain and wind, and lightweightness, etc. from material functionalities of outdoor wear were found to be important. From function required in clothing for outdoor activity, location tracking, night glow, and lighting functions were found to be most important. For results investigating the necessity of the jacket's location tracking function and lighting function using solar cell, high scores of 3.9~4.0 were given. Purchase intentions for smart outdoor jacket with location tracking and lighting functions devised by this study were fairly positive and most responses indicated that the appropriate purchase price was between 200,000 to 300,000 won while possible problems of this smart outdoor jacket were listed in the order of washing inconvenience, high price, device weight, and discomfort in movement. The draft proposal to integrate with wearable devices for smart outdoor jacket prototype is as follows: Solar cell has been attached to the upper arm but placed inside a transparent pocket which has been detachable for washing convenience while the solar cell and controller have been integrated into a single unit. Using frequent movement exhibited by the arms, EL has been attached along the center line of the raglan sleeve for easy spotting when used as an emergency signal or for night lighting function during outdoor activity. GPS has been attached on the left sleeve so that the person can bend the left arm inward and operate the GPS screen with the right hand while walking or running outdoors.

Emerging role of anti-proliferative protein BTG1 and BTG2

  • Kim, Sang Hyeon;Jung, In Ryeong;Hwang, Soo Seok
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.380-388
    • /
    • 2022
  • The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naive and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics.

Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization

  • Cattaneo, Matteo;Morozumi, Yuichi;Perazza, Daniel;Boussouar, Faycal;Jamshidikia, Mahya;Rousseaux, Sophie;Verdel, Andre;Khochbin, Saadi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.851-856
    • /
    • 2014
  • ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.

Analysis of Differentially Expressed Genes Between Leaves and Grain Tissues of Three Wheat Cultivars

  • Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.148-148
    • /
    • 2019
  • Wheat is a very important crop as a food source worldwide, but gluten in wheat causes a variety of allergic reactions. Previous studies have developed ${\omega}-5$ gliadin deleted O-free, known as the central antigen of WDEIA (wheat-dependent exercise-induced anaphylaxis). In this study, we performed RNA sequencing on the grains and leaves of the allergic-reduced species O-free and their cultivars, Keumkang and Olgeuru, to analyze differentially expressed genes (DEG) based on different cultivars and tissues. Tissues of all species were biologically repeated three times. We used bowtie2 version 2.3.5.1 to get sequence data from RNAseq and used cufflinks and Tophat programs to find DEG. When comparing leaf and grain tissues, a total of 1,244 DEGs were found in the leaf tissues while only 563 DEGs were found in the grain tissues. As a result of gene ontology analysis of differentially expressed genes, the leaf tissues were mostly included in the "catalytic activity" part of molecular function, "metabolic process" part of biological process, and "membrane" part of cell component. The grain tissues were mostly included in the "metabolic process" part of biological process, "binding" and "catalytic activity" part of molecular function, and "membrane, cell, cell part" parts of cell component. Based on these results, we present information on the differentially expressed genes of the three cultivars of leaves and grains. This study could be an important basis for studying the characteriztion of O-free.

  • PDF

AKAPDB: A-Kinase Anchoring Proteins Database

  • Kim, In-Sil;Lim, Kyung-Joon;Han, Bok-Ghee;Chung, Myung-Guen;Kim, Kyu-Won
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.90-93
    • /
    • 2010
  • A-kinase-anchoring proteins (AKAPs) are scaffold proteins which compartmentalize protein kinase A (PKA, cAMP-dependent protein kinase) and other enzymes to specific subcellular sites. The spatiotemporal control of these enzymes by AKAPs is important for cellular function like cell growth and development etc. Hence, it is important to understand the basic function of AKAPs and their functional domains. However, diverse names, function, cellular localizations and many members of AKAPs increase difficulties when researchers search appropriate AKAPs for their experimental purpose. Nevertheless, there was no previous AKAPs-related database regardless of their important cellular functions and difficulty of finding appropriate AKAPs. So, we developed AKAPs database (AKAPDB), which contains their sequence information, functions and other information derived from prediction programs and other databases. Therefore, we propose that AKAPDB can be an important tool to researchers in the related fields. AKAPDB is available via the internet at http://plaza3.snu.ac.kr/akapdb/.

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression

  • Go, Gyeongyun;Yoon, Yeo Min;Yoon, Sungtae;Lee, Gaeun;Lim, Ji Ho;Han, Su-Yeon;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

Safety Confirmation of Ship's Crew Using Cell-phone with GPS Receiver and Wireless LAN.

  • Umeno, Chie;Namie, Hiromune;Susuki, Osamu;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.317-320
    • /
    • 2006
  • Ships and their cargos have been managed safely by positioning report system. However, little attention has been paid to safety of crew's works with danger. The attempt that used PHS inboard was before by the present authors. However, the functions were just voice call and mail exchange. The data acquisition from the terminal by proper control was not possible. Thus the position of the terminal was not available. As for the cell phone of next generation, GPS receiver and wireless LAN are installed by manufacturers. Therefore, we propose a system which uses a cell-phone with GPS receiver on a ship in order to promote the safety of ship's crew. We checked the availability of cell-phone GPS receiver at thirty different points inboard. The positioning was not possible in the areas further than 4m from the window. Then, we proposed the system which follows the positions of the crews and confirms their safety inboard by using the VoIP (Voice over Internet Protocol) function by wireless LAN.

  • PDF

The role of microRNAs in synaptic development and function

  • Corbin, Rachel;Olsson-Carter, Katherine;Slack, Frank
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.131-135
    • /
    • 2009
  • MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory.

In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges

  • Konstantina-Maria Founta;Costis Papanayotou
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.113-121
    • /
    • 2022
  • The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients' own cells. Novel approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.

Nuclear structures and their emerging roles in cell differentiation and development

  • Hye Ji Cha
    • BMB Reports
    • /
    • v.57 no.9
    • /
    • pp.381-387
    • /
    • 2024
  • The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination.