DOI QR코드

DOI QR Code

Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization

  • Cattaneo, Matteo (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Morozumi, Yuichi (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Perazza, Daniel (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Boussouar, Faycal (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Jamshidikia, Mahya (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Rousseaux, Sophie (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Verdel, Andre (Team RNA and Epigenetics, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine) ;
  • Khochbin, Saadi (Team Epigenetics and Cell Signaling, Universite Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculte de Medecine)
  • Received : 2014.09.19
  • Accepted : 2014.09.22
  • Published : 2014.12.31

Abstract

ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.

Keywords

References

  1. Boussouar, F., Jamshidikia, M., Morozumi, Y., Rousseaux, S., and Khochbin, S. (2013). Malignant genome reprogramming by ATAD2. Biochim. Biophys. Acta 1829, 1010-1014. https://doi.org/10.1016/j.bbagrm.2013.06.003
  2. Caron, C., Lestrat, C., Marsal, S., Escoffier, E., Curtet, S., Virolle, V., Barbry, P., Debernardi, A., Brambilla, C., Brambilla, E., et al. (2010). Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 29, 5171-5181. https://doi.org/10.1038/onc.2010.259
  3. Ciro, M., Prosperini, E., Quarto, M., Grazini, U., Walfridsson, J., McBlane, F., Nucifero, P., Pacchiana, G., Capra, M., Christensen, J., et al. (2009). ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491-8498. https://doi.org/10.1158/0008-5472.CAN-09-2131
  4. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469. https://doi.org/10.1093/nar/gkn180
  5. Dereeper, A., Audic, S., Claverie, J.M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8. https://doi.org/10.1186/1471-2148-10-8
  6. Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-496. https://doi.org/10.1038/20974
  7. Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M., Taly, J.F., and Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13-17. https://doi.org/10.1093/nar/gkr245
  8. Ferreira, M.E., Flaherty, K., and Prochasson, P. (2011). The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIRdependent histone genes. PLoS One 6, e21113. https://doi.org/10.1371/journal.pone.0021113
  9. Fillingham, J., Kainth, P., Lambert, J.P., van Bakel, H., Tsui, K., Pena-Castillo, L., Nislow, C., Figeys, D., Hughes, T.R., Greenblatt, J., et al. (2009). Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol. Cell 35, 340-351. https://doi.org/10.1016/j.molcel.2009.06.023
  10. Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231. https://doi.org/10.1016/j.cell.2012.02.013
  11. Goudarzi, A., Shiota, H., Rousseaux, S., and Khochbin, S. (2014). Genome-scale acetylation-dependent histone eviction during spermatogenesis. J. Mol. Biol. pii: S0022-2836(14)00122-3.
  12. Gradolatto, A., Rogers, R.S., Lavender, H., Taverna, S.D., Allis, C.D., Aitchison, J.D., and Tackett, A.J. (2008). Saccharomyces cerevisiae Yta7 regulates histone gene expression. Genetics 179, 291-304. https://doi.org/10.1534/genetics.107.086520
  13. Gradolatto, A., Smart, S.K., Byrum, S., Blair, L.P., Rogers, R.S., Kolar, E.A., Lavender, H., Larson, S.K., Aitchison, J.D., Taverna, S.D., et al. (2009). A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity. Mol. Cell. Biol. 29, 4604-4611. https://doi.org/10.1128/MCB.00160-09
  14. Gunjan, A., and Verreault, A. (2003). A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537-549. https://doi.org/10.1016/S0092-8674(03)00896-1
  15. Jambunathan, N., Martinez, A.W., Robert, E.C., Agochukwu, N.B., Ibos, M.E., Dugas, S.L., and Donze, D. (2005). Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 171, 913-922. https://doi.org/10.1534/genetics.105.046938
  16. Kemena, C., and Notredame, C. (2009). Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25, 2455-2465. https://doi.org/10.1093/bioinformatics/btp452
  17. Kurat, C.F., Lambert, J.P., van Dyk, D., Tsui, K., van Bakel, H., Kaluarachchi, S., Friesen, H., Kainth, P., Nislow, C., Figeys, D., et al. (2011). Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein. Genes Dev. 25, 2489-2501. https://doi.org/10.1101/gad.173427.111
  18. Lombardi, L.M., Ellahi, A., and Rine, J. (2011). Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7. Proc. Natl. Acad. Sci. USA 108, E1302-1311. https://doi.org/10.1073/pnas.1116819108
  19. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41, W597-600. https://doi.org/10.1093/nar/gkt376
  20. Revenko, A.S., Kalashnikova, E.V., Gemo, A.T., Zou, J.X., and Chen, H.W. (2010). Chromatin loading of E2F-MLL complex by cancerassociated coregulator ANCCA via reading a specific histone mark. Mol. Cell. Biol. 30, 5260-5272. https://doi.org/10.1128/MCB.00484-10
  21. Tackett, A.J., Dilworth, D.J., Davey, M.J., O'Donnell, M., Aitchison, J.D., Rout, M.P., and Chait, B.T. (2005). Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 169, 35-47. https://doi.org/10.1083/jcb.200502104
  22. Tseng, R.J., Armstrong, K.R., Wang, X., and Chamberlin, H.M. (2007). The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans. Mol. Genet. Genomics 278, 507-518. https://doi.org/10.1007/s00438-007-0265-6
  23. UniProt, C. (2014). Activities at the universal protein resource (UniProt). Nucleic Acids Res. 42, D191-198. https://doi.org/10.1093/nar/gkt1140
  24. Zou, J.X., Revenko, A.S., Li, L.B., Gemo, A.T., and Chen, H.W. (2007). ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc. Natl. Acad. Sci. USA 104, 18067-18072. https://doi.org/10.1073/pnas.0705814104
  25. Zou, J.X., Guo, L., Revenko, A.S., Tepper, C.G., Gemo, A.T., Kung, H.J., and Chen, H.W. (2009). Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res. 69, 3339-3346. https://doi.org/10.1158/0008-5472.CAN-08-3440
  26. Zunder, R.M., and Rine, J. (2012). Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol. Cell. Biol. 32, 4337-4349. https://doi.org/10.1128/MCB.00871-12

Cited by

  1. ATAD2 overexpression is associated with progression and prognosis in colorectal cancer vol.46, pp.3, 2016, https://doi.org/10.1093/jjco/hyv195
  2. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer vol.19, pp.10, 2017, https://doi.org/10.1016/j.celrep.2017.05.049
  3. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells vol.8, pp.4, 2016, https://doi.org/10.1093/jmcb/mjv060
  4. Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling vol.6, pp.39, 2014, https://doi.org/10.18632/oncotarget.6152
  5. Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers : A systematic review and meta-analysis vol.98, pp.39, 2014, https://doi.org/10.1097/md.0000000000017180
  6. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma vol.17, pp.2, 2014, https://doi.org/10.3892/ol.2018.9871
  7. Bromodomains: a new target class for drug development vol.18, pp.8, 2019, https://doi.org/10.1038/s41573-019-0030-7
  8. Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone vol.10, pp.1, 2014, https://doi.org/10.1038/s41467-019-13743-9
  9. Knockdown of ATAD2 Inhibits Proliferation and Tumorigenicity Through the Rb-E2F1 Pathway and Serves as a Novel Prognostic Indicator in Gastric Cancer vol.12, pp.None, 2014, https://doi.org/10.2147/cmar.s228629
  10. Long Non-Coding RNA CRNDE Promotes Colorectal Carcinoma Cell Progression and Paclitaxel Resistance by Regulating miR-126-5p/ATAD2 Axis vol.13, pp.None, 2020, https://doi.org/10.2147/ott.s237580
  11. The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast vol.117, pp.10, 2014, https://doi.org/10.1073/pnas.1917814117
  12. Downregulation of AAA-domain-containing protein 2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway vol.319, pp.1, 2014, https://doi.org/10.1152/ajpcell.00133.2019
  13. Therapeutic Strategies Against Cancer Stem Cells in Esophageal Carcinomas vol.10, pp.None, 2014, https://doi.org/10.3389/fonc.2020.598957
  14. A CDK-regulated chromatin segregase promoting chromosome replication vol.12, pp.1, 2014, https://doi.org/10.1038/s41467-021-25424-7
  15. ATAD2 controls chromatin-bound HIRA turnover vol.4, pp.12, 2014, https://doi.org/10.26508/lsa.202101151