References
- Boussouar, F., Jamshidikia, M., Morozumi, Y., Rousseaux, S., and Khochbin, S. (2013). Malignant genome reprogramming by ATAD2. Biochim. Biophys. Acta 1829, 1010-1014. https://doi.org/10.1016/j.bbagrm.2013.06.003
- Caron, C., Lestrat, C., Marsal, S., Escoffier, E., Curtet, S., Virolle, V., Barbry, P., Debernardi, A., Brambilla, C., Brambilla, E., et al. (2010). Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 29, 5171-5181. https://doi.org/10.1038/onc.2010.259
- Ciro, M., Prosperini, E., Quarto, M., Grazini, U., Walfridsson, J., McBlane, F., Nucifero, P., Pacchiana, G., Capra, M., Christensen, J., et al. (2009). ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491-8498. https://doi.org/10.1158/0008-5472.CAN-09-2131
- Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469. https://doi.org/10.1093/nar/gkn180
- Dereeper, A., Audic, S., Claverie, J.M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8. https://doi.org/10.1186/1471-2148-10-8
- Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-496. https://doi.org/10.1038/20974
- Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M., Taly, J.F., and Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13-17. https://doi.org/10.1093/nar/gkr245
- Ferreira, M.E., Flaherty, K., and Prochasson, P. (2011). The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIRdependent histone genes. PLoS One 6, e21113. https://doi.org/10.1371/journal.pone.0021113
- Fillingham, J., Kainth, P., Lambert, J.P., van Bakel, H., Tsui, K., Pena-Castillo, L., Nislow, C., Figeys, D., Hughes, T.R., Greenblatt, J., et al. (2009). Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol. Cell 35, 340-351. https://doi.org/10.1016/j.molcel.2009.06.023
- Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231. https://doi.org/10.1016/j.cell.2012.02.013
- Goudarzi, A., Shiota, H., Rousseaux, S., and Khochbin, S. (2014). Genome-scale acetylation-dependent histone eviction during spermatogenesis. J. Mol. Biol. pii: S0022-2836(14)00122-3.
- Gradolatto, A., Rogers, R.S., Lavender, H., Taverna, S.D., Allis, C.D., Aitchison, J.D., and Tackett, A.J. (2008). Saccharomyces cerevisiae Yta7 regulates histone gene expression. Genetics 179, 291-304. https://doi.org/10.1534/genetics.107.086520
- Gradolatto, A., Smart, S.K., Byrum, S., Blair, L.P., Rogers, R.S., Kolar, E.A., Lavender, H., Larson, S.K., Aitchison, J.D., Taverna, S.D., et al. (2009). A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity. Mol. Cell. Biol. 29, 4604-4611. https://doi.org/10.1128/MCB.00160-09
- Gunjan, A., and Verreault, A. (2003). A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537-549. https://doi.org/10.1016/S0092-8674(03)00896-1
- Jambunathan, N., Martinez, A.W., Robert, E.C., Agochukwu, N.B., Ibos, M.E., Dugas, S.L., and Donze, D. (2005). Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 171, 913-922. https://doi.org/10.1534/genetics.105.046938
- Kemena, C., and Notredame, C. (2009). Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25, 2455-2465. https://doi.org/10.1093/bioinformatics/btp452
- Kurat, C.F., Lambert, J.P., van Dyk, D., Tsui, K., van Bakel, H., Kaluarachchi, S., Friesen, H., Kainth, P., Nislow, C., Figeys, D., et al. (2011). Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein. Genes Dev. 25, 2489-2501. https://doi.org/10.1101/gad.173427.111
- Lombardi, L.M., Ellahi, A., and Rine, J. (2011). Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7. Proc. Natl. Acad. Sci. USA 108, E1302-1311. https://doi.org/10.1073/pnas.1116819108
- McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41, W597-600. https://doi.org/10.1093/nar/gkt376
- Revenko, A.S., Kalashnikova, E.V., Gemo, A.T., Zou, J.X., and Chen, H.W. (2010). Chromatin loading of E2F-MLL complex by cancerassociated coregulator ANCCA via reading a specific histone mark. Mol. Cell. Biol. 30, 5260-5272. https://doi.org/10.1128/MCB.00484-10
- Tackett, A.J., Dilworth, D.J., Davey, M.J., O'Donnell, M., Aitchison, J.D., Rout, M.P., and Chait, B.T. (2005). Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 169, 35-47. https://doi.org/10.1083/jcb.200502104
- Tseng, R.J., Armstrong, K.R., Wang, X., and Chamberlin, H.M. (2007). The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans. Mol. Genet. Genomics 278, 507-518. https://doi.org/10.1007/s00438-007-0265-6
- UniProt, C. (2014). Activities at the universal protein resource (UniProt). Nucleic Acids Res. 42, D191-198. https://doi.org/10.1093/nar/gkt1140
- Zou, J.X., Revenko, A.S., Li, L.B., Gemo, A.T., and Chen, H.W. (2007). ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc. Natl. Acad. Sci. USA 104, 18067-18072. https://doi.org/10.1073/pnas.0705814104
- Zou, J.X., Guo, L., Revenko, A.S., Tepper, C.G., Gemo, A.T., Kung, H.J., and Chen, H.W. (2009). Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res. 69, 3339-3346. https://doi.org/10.1158/0008-5472.CAN-08-3440
- Zunder, R.M., and Rine, J. (2012). Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol. Cell. Biol. 32, 4337-4349. https://doi.org/10.1128/MCB.00871-12
Cited by
- ATAD2 overexpression is associated with progression and prognosis in colorectal cancer vol.46, pp.3, 2016, https://doi.org/10.1093/jjco/hyv195
- Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer vol.19, pp.10, 2017, https://doi.org/10.1016/j.celrep.2017.05.049
- Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells vol.8, pp.4, 2016, https://doi.org/10.1093/jmcb/mjv060
- Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling vol.6, pp.39, 2014, https://doi.org/10.18632/oncotarget.6152
- Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers : A systematic review and meta-analysis vol.98, pp.39, 2014, https://doi.org/10.1097/md.0000000000017180
- MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma vol.17, pp.2, 2014, https://doi.org/10.3892/ol.2018.9871
- Bromodomains: a new target class for drug development vol.18, pp.8, 2019, https://doi.org/10.1038/s41573-019-0030-7
- Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone vol.10, pp.1, 2014, https://doi.org/10.1038/s41467-019-13743-9
- Knockdown of ATAD2 Inhibits Proliferation and Tumorigenicity Through the Rb-E2F1 Pathway and Serves as a Novel Prognostic Indicator in Gastric Cancer vol.12, pp.None, 2014, https://doi.org/10.2147/cmar.s228629
- Long Non-Coding RNA CRNDE Promotes Colorectal Carcinoma Cell Progression and Paclitaxel Resistance by Regulating miR-126-5p/ATAD2 Axis vol.13, pp.None, 2020, https://doi.org/10.2147/ott.s237580
- The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast vol.117, pp.10, 2014, https://doi.org/10.1073/pnas.1917814117
- Downregulation of AAA-domain-containing protein 2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway vol.319, pp.1, 2014, https://doi.org/10.1152/ajpcell.00133.2019
- Therapeutic Strategies Against Cancer Stem Cells in Esophageal Carcinomas vol.10, pp.None, 2014, https://doi.org/10.3389/fonc.2020.598957
- A CDK-regulated chromatin segregase promoting chromosome replication vol.12, pp.1, 2014, https://doi.org/10.1038/s41467-021-25424-7
- ATAD2 controls chromatin-bound HIRA turnover vol.4, pp.12, 2014, https://doi.org/10.26508/lsa.202101151