• Title/Summary/Keyword: Cell Loading

Search Result 485, Processing Time 0.031 seconds

Anticancer Loaded Multi-wall Carbon Nanotube for Targeting Tumors

  • Wang, Wenping;Choi, Jung-Il;Kang, Sang-Soo;Nam, Tae-Hyun;Khang, Dong-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • Flat form technology for constructing anticancer loaded multi-walled carbon nanotubes (mwCNTs) was introduced in this study. Conventional anticancer drugs, such as MTX (Methotrexate), cisplatin, DOX (Doxorubicin hydrochloride), DAU (Daunorubicin) and EPI (epirubicin) were bio-conjugated with folic acid (FA) for selective targeting tumor cells. Loading efficiencies of the used anticancer drugs on mwCNTs have shown different order of bindings depending on the molecular bind affinity of NH (amine) formation on mwCNTs. MTT assays have shown increased selective target efficiency of FA conjugated mwCNTs on breast cancer cell growth inhibition. All results collectively indicated promising application of mwCNTs as a smart inorganic nanomaterial for selective targeting drug delivery vehicle at tumor tissues.

  • PDF

The Characteristics of the Composite Ground with Sand Compaction Pile(SCP) using Large Soil Box (대형토조시험을 이용한 모래다짐말뚝이 적용된 복합지반의 침하 및 하중전이특성)

  • Kim, Oo-Seok;Park, Eon-Sang;Kim, Jae-Kwon;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.974-981
    • /
    • 2005
  • Because general laboratory tests for sand compaction pile method including unit-cell test device have fixed outside diameter, as area replacement ratio increase, diameter of sand pile increase. These condition can bring about overestimation of stiffness of composite ground. In addition, existing large soil box which consist of bellows type loading plate can occur serious mistake in checking the amount of drained water because there are additional drainage along the inside wall in device. Overcoming these shortcoming, this paper developed modified large scale soil box consist of piston type load plate. In this study, using this device, series of modified large scale soil box tests were performed, and investigated the settlement and stress transportation characteristics with area replacement ratio in sand compaction pile method.

  • PDF

Characterization and Prediction of Elastic Constants of Twisted Yarn Composites (Twisted Yarn 복합재료의 물성치 시험 및 탄성계수 예측)

  • 변준형;이상관;엄문광;김태원;배성우
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2002
  • A stiffness model has been proposed to predict elastic constants of twisted yam composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yam twist angles were tested, and strength and Young's modulus under tensile, compressive, and shear loading have been obtained. The sample was fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yam.

The Fabrication and Characteristics of Dye-sensitized Solar Cells (DSSCs) Using the Patterned TiO2 Films

  • Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.445.1-445.1
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple structure and low manufacturing cost. The $TiO_2$ film with thickness of $8{\sim}10{\mu}m$, which consists of nanoparticles, acts as both a scaffold with a high surface-to-volume ratio for the dye loading and a pathway to remove the electrons. However, charge carriers have to move across many particle boundaries by a hopping mechanism. So, one dimensional nanostructures such as nanotubes, nanorods and nanowires should improve charge carrier transportation by providing a facile direct electron pathway and lowering the diffusion resistance. However, the efficiencies of DSSCs using one dimensional nanostructures are less than the $TiO_2$ nanoparticle-based DSSCs. In this work, the patterned $TiO_2$ film with thickness of $3{\mu}m$ was deposited using photolithography process to decrease of electron pathway and increase of surface area and transmittance of $TiO_2$ films. Properties of the patterned $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Immobilization of Rhizopus chinesis using Polyurethane Foams (Polyurethane Foam을 이용한 리파아제 생산 균주 Rhizopus chinesis의 고정화)

  • 주지선;류희욱장용근
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.172-178
    • /
    • 1992
  • A simple and effective method has been developed for the immobilization of lipase producing Rhizopus chinensis on polyurethane foam. In this method, the fungal cells with 1, 3 specific lipase in there inside are immobilized within the foam matrix. Four types of commercially available polyurethane foam were tested. The ultimate purpose of the process is to produce low-cost biocatalysts for lipase-catalyzed reactions, which are being increasingly used for industrial applications. Effects of several parameters were studied on the cell loading and the hydrolytic activity of intracellular lipase after acetone drying. These parameters were the type, size, and amount of polyurethane foam. In all the cases, the intracellular lipase activity obtained with the foam was approximately twice greater than that obtained in the absence of the foam.

  • PDF

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

Effects of Dopamine on Intracellular pH in Opossum Kidney Cells

  • Kang, Kyung-Woo;Kim, Yung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • $Na^+/H^+$ exchanger (NHE) has a critical role in regulation of intracellular pH (pHi) in the renal proximal tubular cells. It has recently been shown that dopamine inhibits NHE in the renal proximal tubules. Nevertheless, there is a dearth of information on the effects of long-term (chronic) dopamine treatment on NHE activities. This study was performed to elucidate the pHi regulatory mechanisms during the chronic dopamine treatments in renal proximal tubular OK cells. The resting pHi was greatly decreased by chronic dopamine treatments. The initial rate and the amplitude of intracellular acidification by isosmotical $Na^+$ removal from the bath medium in chronically dopamine-treated cells were much smaller than those in control. Although it seemed to be attenuated in $Na^+$-dependent pH regulation system, $Na^+$-dependent pHi recovery by NHE after intracelluar acid loading in the dopamine-treated groups was not significantly different from the control. The result is interpreted to be due to the balance between the stimulation effects of lower pHi on the NHE activity and counterbalance by dopamine. Our data strongly suggested that chronic dopamine treatment increased intrinsic intracellular buffer capacity, since higher buffer capacity was induced by lower resting pHi and this effect could attenuate pHi changes under extracellular $Na^+$-free conditions in chronically dopamine-treated cells. Our study also demonstrated that intracellular acidification induced by chronic dopamine treatments was not mediated by changes in NHE activity.

Cantilever Type Idler Roller in Roll-to-roll Process for Printed Electronics (인쇄전자용 롤투롤 공정의 외팔보 형식 아이들 롤러)

  • Yoon, Deok-Kyun;Lee, Seung-Hyun;Kang, Jeong-Sik;Cho, Byung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1153-1158
    • /
    • 2011
  • Roll-to-roll process is an emerging mass production method for printed and flexible electronics such as touch screen panel, RFID tag, thin film solar cell, and flexible display due to its high throughput. High precision in printing and coating is required to apply functional materials onto substrate. For such reason, every part of the roll-to-roll equipment needs to be precisely fabricated and to retain its precision under regular operation. In this article, the precision of cantilever type idler roller and a novel method to mitigate its deflection under web tension loading are discussed and the method is verified using both the numerical and the experimental works. The proposed method improves the structural rigidity of cantilever type roller whose advantages, such as low capital cost and high web path configurability, are maintained.

An Experimental Study on the Reaction Characteristics of Anode offgas Catalytic Combustor for 25kW MCFC Systems (25 kW급 MCFC 배가스 촉매연소기의 실험적 연소특성)

  • Lee, Sang Min;Woo, Hyuntack;Ahn, Kook Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • Anode off-gas of high temperature fuel cells such as MCFC contains a significant amount of combustible components like hydrogen, carbon monoxide and methane according to fuel utilization ratio of the fuel cell stack. Thus, it is important to fully burn anode off-gas and utilize the generated heat in order to increase system efficiency and reduce emissions as well. In the present study, 25 kW catalytic combustor has been developed for the application to a load-following 300kW MCFC system. Mixing and combustion characteristics have been experimentally investigated with the catalytic combustor. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple catalysts having different structures and compositions. Results show that the exhaust emissions are highly dependent on the catalyst loading and the ratio of catalytic components. Test results at load-following conditions are also shown in the present study.

  • PDF

Characterization of effects of cadmium selenide on the performance of poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester organic solar cells (Cadmium selenide 영향에 따른 poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester 유기태양전지 특성 분석)

  • Choi, Mijung;Park, Eungkyu;Yeon, Ik-Jun;Ko, Sung Sik;Kim, Yong-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • We studied the performance of CdSe nanoparticle in the active layer of organic photovoltaics (OPVs) by changing concentration of the CdSe NPs in the P3HT:PCBM layer. We observed that the absorption peak value gradually increases with the increasing amount of CdSe NPs at 600nm wave length. However, the electrical properties of OPVs correspond less with the tendency of UV/visible result. The highest performance was shown with 10% of CdSe NPs. The device performance decreased after 10% of CdSe NPs, this shows the dependencies of performanc of hybrid solar cells on the CdSe NPs loading amount. The resulting OPVs with 10 % of CdSe NPs show a short circuit current density ($J_{sc}$) of $6.96mA/cm^2$, open circuit voltage ($V_{oc}$) of 0.61V, fill factor (FF) of 0.59, and power conversion efficiency (PCE) of 2.53% under AM 1.5 ($100mW/cm^2$).

  • PDF