• 제목/요약/키워드: Cell Convection

검색결과 137건 처리시간 0.027초

Design of Solar Cell Cooling System Using Convection Phenomena

  • Lee, Jae-hyuk
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.123-128
    • /
    • 2020
  • We constructed a cooling system for solar cells using convection phenomena and investigated its cooling performance. The cooling system didn't need any driving power or water resources. The convection cooler manufactured with a right-triangle shape of an air duct was attached to the rear of the solar cell to confirm that cooling was performed using convection phenomena. When the ratio of duct width to attachment surface width was 3:7, and the ratio of entrance height and exit height of duct was 5:1, it showed the best cooling performance. Comparative experiments with solar cells without convection cooler showed that cooling effects from 16.5℃ to 20.9℃ occurred after 40 minutes exposed to the 1300W Xenon lamp condition.

밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구 (An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure)

  • 이준식;김승곤;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

비정렬 셀 중심 방법에 의한 3차원 캐비티내의 자연대류 현상에 관한 수치해석 (NUMERICAL SIMULATION OF NATURAL CONVECTION IN A CUBICAL-CAVITY BY UNSTRUCTURED CELL-CENTERED METHOD)

  • 명현국;김종은
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.61-66
    • /
    • 2005
  • Natural convection flows in a cubical, air-filled cavity that has one pair of opposing faces isothermal at different temperatures, Th and Tc, the remaining faces having a linear variation from Tc to Th are numerically simulated by a new solution code(PowerCFD) using unstructured cell-centered method. Solutions are obtained for configurations with a Rayleigh number as high as 105 and three inclination angles ${\theta}$ of the isothermal faces from horizontal: namely ${\theta}=0$, 45 and $90^{\circ}$. Interesting features are presented in detail and comparisons are made with benchmark solutions and experimental results found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical, air-filled cavity with differentially heated walls.

  • PDF

비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가 (EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석 (Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가 (Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower)

  • 최종필;구보성;장재혁;서영호;김병희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구 (The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow)

  • 서석진;박찬국
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

Numerical Study on the Vertical Bridgman Crystal Growth with Thermosolutal Convection

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1188-1195
    • /
    • 2001
  • A numerical analysis has been carried out to investigate the influences of thermosolutal convection on the heat and mass transfer and solute segregation in crystals grown by the vertical Bridgman technique. The governing equations are solved by a finite-volume method using the power law scheme and the SIMPLE algorithm in which body-fitted coordinate system has been used. A primary convective cell driven by thermal gradients forms in the bulk of the domain, while a secondary convective cell driven by solutal gradients forms near interface. As the solutal Rayleigh number increases, secondary cell becomes to be stronger and has a great influence on the radial concentration along the interface.

  • PDF

강제 대류가 있는 열소산 구조물의 구조최적설계 (Structural Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호;강남철
    • 한국추진공학회지
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2009
  • 이 연구 논문에서는 위상최적화 방법을 사용하여 강제대류를 이용한 열소산하는 구조물을 설계하는 방법을 개발한다. 전기 부품이나 기계구조물에서 발생하는 열을 낮추기 위해서 자연 대류와 강제 대류가 넓게 사용되고 있다. 또한 현재에는 화학전지(Fuel cell)나 로켓의 추진기관 등에서 발생한 열을 낮추기 위해서 강제 대류를 사용하고 있다. 현재에 이런 시스템을 효과적으로 열을 소산시키기 위해서 유동의 채널을 설계하는 것이 아주 중요한 이슈로 다루어지고 있다. 따라서 이 논문에서는 위상최적화 기법을 사용하여 최적의 채널을 설계하는 연구를 수행한다. 대류 현상을 고려하기 위해서 비압축성 N-S 방정식의 해석을 수행하였다. 이 논문에서는 열과 유체가 연계되어 있는 시스템을 수치적으로 연구하고 강제대류를 고려하는 최적의 채널 설계 결과를 제시한다.